IUTを読むための用語集資料スレ2 at MATH
[2ch|▼Menu]
[前50を表示]
100:132人目の素数さん
21/04/17 11:59:07.65 cr30r3uy.net
メモ
URLリンク(ja.wikipedia.org)
数論幾何学では、フロベニオイドは、グローバルフィールドの有限拡張のモデルでの線束の理論を一般化する追加の構造を持つ圏である。フロベニオイドは望月新一(2008)によって導入された。「フロベニオイド」という言葉は、フロベニウスとモノイドを合わせたものである。フロベニオイド間の特定のフロベニウス射は、通常のフロベニウス射の類似物であり、フロベニオイドの最も単純な例のいくつかは、本質的にモノイドである。
目次
1 モノイドのフロベニオイド
2 初等フロベニオイド
3 フロベニオイド
モノイドのフロベニオイド
Mが可換モノイドである場合、それは乗算の下で正の整数のモノイドNによって自然に作用され、Nの要素nはMの要素にnを乗算する。Mのフロベニオイドは、MとNの半直接積である。このフロベニオイドの基になる圏は、モノイドの圏であり、1つの対象とモノイドの各要素の射が含まれる。Mが非負整数の加法モノイドである場合、標準のフロベニオイドはこの構造の特殊なケースである。
初等フロベニオイド
初等フロベニオイドは、可換モノイドのフロベニオイドの一般化であり、基本カテゴリD上の可換モノイドのファミリーΦによる正の整数のモノイドの一種の半直接積によって与えられる。アプリケーションでは、カテゴリDはグローバルフィールドの有限分離可能な拡張のモデルのカテゴリである場合があり、Φはこれらのモデルの線束に対応し、Nの正の整数nの作用はaの線束のn乗をとることによって与えられる。
フロベニオイド
フロベニオイドは、圏Cと初等フロベニオイドへの関手で構成され、大域体のモデルの直線束と除数の動作に関連するいくつかの複雑な条件を満たす。望月の基本定理の1つは、さまざまな条件下で圏Cからフロベニオイドを再構築できると述べている。
つづく

101:132人目の素数さん
21/04/17 11:59:55.62 cr30r3uy.net
>>100
つづき
参考文献
望月, 新一 (2008), “The geometry of Frobenioids. I. The general theory”, Kyushu Journal of Mathematics 62 (2): 293?400, doi:10.2206/kyushujm.62.293, ISSN 1340-6116, MR2464528
望月, 新一 (2008), “The geometry of Frobenioids. II. Poly-Frobenioids”, Kyushu Journal of Mathematics 62 (2): 401?460, doi:10.2206/kyushujm.62.401, ISSN 1340-6116, MR2464529
望月, 新一 (2009), “The etale theta function and its Frobenioid-theoretic manifestations”, Kyoto University. Research Institute for Mathematical Sciences. Publications 45 (1): 227?349, doi:10.2977/prims/1234361159, ISSN 0034-5318, MR2512782 Mochizuki, Shinichi (2011), Comments
外部リンク
エタール・テータ関数とは何ですか?
URLリンク(mathoverflow.net)
What is an etale theta function?
asked Feb 6 '15 at 14:06
Minhyong Kim
(引用終り)
以上

102:132人目の素数さん
21/04/17 12:52:51.59 cr30r3uy.net
メモ
URLリンク(www.kurims.kyoto-u.ac.jp)
TOPICS IN ABSOLUTE ANABELIAN GEOMETRY III:
GLOBAL RECONSTRUCTION ALGORITHMS
Shinichi Mochizuki
November 2015
Abstract. In the present paper, which forms the third part of a three-part series
on an algorithmic approach to absolute anabelian geometry, we apply the absolute anabelian technique of Belyi cuspidalization developed in the second part,
together with certain ideas contained in an earlier paper of the author concerning the
category-theoretic representation of holomorphic structures via either the topological group SL2(R) or the use of “parallelograms, rectangles, and squares”, to develop
a certain global formalism for certain hyperbolic orbicurves related to a oncepunctured elliptic curve over a number field. This formalism allows one to construct
certain canonical rigid integral structures, which we refer to as log-shells, that
are obtained by applying the logarithm at various primes of a number field. Moreover, although each of these local logarithms is “far from being an isomorphism” both
in the sense that it fails to respect the ring structures involved and in the sense [cf.
Frobenius morphisms in positive characteristic!] that it has the effect of exhibiting
the “mass” represented by its domain as a “somewhat smaller collection of mass”
than the “mass” represented by its codomain, this global formalism allows one to
treat the logarithm operation as a global operation on a number field which satisfies
the property of being an “isomomorphism up to an appropriate renormalization operation”, in a fashion that is reminiscent of the isomorphism induced
on differentials by a Frobenius lifting, once one divides by p.
つづく

103:132人目の素数さん
21/04/17 12:53:20.91 cr30r3uy.net
>>102
つづき
More generally, if one
thinks of number fields as corresponding to positive characteristic hyperbolic curves
and of once-punctured elliptic curves on a number field as corresponding to nilpotent
ordinary indigenous bundles on a positive characteristic hyperbolic curve, then many
aspects of the theory developed in the present paper are reminiscent of [the positive
characteristic portion of] p-adic Teichm¨uller theory.

Contents:
Introduction
§0. Notations and Conventions
§1. Galois-theoretic Reconstruction Algorithms
§2. Archimedean Reconstruction Algorithms
§3. Nonarchimedean Log-Frobenius Compatibility
§4. Archimedean Log-Frobenius Compatibility
§5. Global Log-Frobenius Compatibility
Appendix: Complements on Complex Multiplication
Introduction
§I1. Summary of Main Results
§I2. Fundamental Naive Questions Concerning Anabelian Geometry
§I3. Dismantling the Two Combinatorial Dimensions of a Ring
§I4. Mono-anabelian Log-Frobenius Compatibility
§I5. Analogy with p-adic Teichm¨uller Theory
Acknowledgements
(引用終り)
以上

104:132人目の素数さん
21/04/17 15:05:33.76 8MN6ablF.net
 
IUTは数学というかグロタン宇宙論になってるな

105:132人目の素数さん
21/04/17 17:29:17.92 cr30r3uy.net
>>104
>IUTは数学というかグロタン宇宙論になってるな
どうもありがとう
個人的見解ですが
数学の「宇宙」という用語は、時代により、だんだん大げさな意味になり
21世紀では、「宇宙」とは、例えばZFCの全ての数学が展開できる入れ物か、それ以上の大きさのものを意味するようになった
グロタン宇宙論もその類いで
昔の集合論の”U”(単なる全体集合)とは、意味が違うのです
そこらが、余計に混乱を招いているように思います

106:132人目の素数さん
21/04/17 18:23:51.69 cr30r3uy.net
やれやれ
修正だってよw
URLリンク(www.kurims.kyoto-u.ac.jp)
望月 最新情報
2021年04月15日
 ・(論文)修正版を更新 URLリンク(www.kurims.kyoto-u.ac.jp)
 (修正箇所のリスト): URLリンク(www.kurims.kyoto-u.ac.jp)
・Added an Introduction
・In \S 1.3, added "(UndIg)", as well as a reference to "(Undig)" in \S 2.1
・Rewrote various portions of \S 1.5
・Rewrote Example 2.4.4
・Modified the title of Example 2.4.5
・Added Example 2.4.6
・Slightly modified the paragraph at the beginning of \S 3
・Slightly modified the final portion of \S 3.1 concerning (FxRng), (FxEuc), (FxFld)
・Added Example 3.9.1 and made slight modifications to the surrounding text
・In \S 3.10, rewrote the discussion preceding (Stp1)
・In \S 3.11, slightly modified the discussion following ({\Theta}ORInd)
  On the Essential Logical Structure of Inter-universal Teichmuller
   Theory in Terms of Logical AND "∧"/Logical OR "∨" Relations:
   Report on the Occasion of the Publication of the Four Main Papers
   on Inter-universal Teichmuller Theory.
2021年03月06日
 ・(論文)宇宙際タイヒミューラー理論に関する論文4篇の出版を記念して、
  新論文を掲載:
  On the Essential Logical Structure of Inter-universal Teichmuller
   Theory in Terms of Logical AND "∧"/Logical OR "∨" Relations:
   Report on the Occasion of the Publication of the Four Main Papers
   on Inter-universal Teichmuller Theory.

107:132人目の素数さん
21/04/17 20:09:05.72 cr30r3uy.net
>>106 追加
重箱の隅ですが
下記の
”2021年01月15日
 ・(論文)修正版を更新(修正箇所のリスト):”が
「2021年04月15日」の修正版を書くときのミスコピー(さらに下の”2021年01月15日”と全く同じ内容)
(多分本当は不要な部分を、思わず知らすコピーしてしまったみたい)
いつ気付いて修正するのかな?(^^;
URLリンク(www.kurims.kyoto-u.ac.jp)
望月最新情報
2021年04月15日
 ・(論文)修正版を更新(修正箇所のリスト):
  On the Essential Logical Structure of Inter-universal Teichmuller
   Theory in Terms of Logical AND "∧"/Logical OR "∨" Relations:
   Report on the Occasion of the Publication of the Four Main Papers
   on Inter-universal Teichmuller Theory.
2021年01月15日
 ・(論文)修正版を更新(修正箇所のリスト):
2021年03月06日
 ・(論文)宇宙際タイヒミューラー理論に関する論文4篇の出版を記念して、
  新論文を掲載:
  On the Essential Logical Structure of Inter-universal Teichmuller
   Theory in Terms of Logical AND "∧"/Logical OR "∨" Relations:
   Report on the Occasion of the Publication of the Four Main Papers
   on Inter-universal Teichmuller Theory.
2021年01月15日
 ・(論文)修正版を更新(修正箇所のリスト):
  Combinatorial Construction of the Absolute Galois Group of the Field of
    Rational Numbers.

108:132人目の素数さん
21/04/17 20:12:36.12 cr30r3uy.net
>>105
>グロタン宇宙論もその類いで
>昔の集合論の”U”(単なる全体集合)とは、意味が違うのです
>そこらが、余計に混乱を招いているように思います
(補足)
・グロタン宇宙論を、いくつも作る?
・その複数のグロタン宇宙論の間を行ったり来たり?
・そこまで大袈裟な話でもなさそうに見えるけど(^^

109:132人目の素数さん
21/04/25 18:03:40.36 x2gQxWeE.net
URLリンク(www.youtube.com)
IUT overview: What papers are involved? Where does it start?
Taylor Dupuy 20151217
In this video I give an overview of what papers are involved in Mochizuki's work on ABC. Hopefully this is useful to get a scope of things.

110:132人目の素数さん
21/05/01 08:46:56.11 4gUFX+vb.net
Inter-universal geometry と ABC予想 (応援スレ) 54
スレリンク(math板:253番)
URLリンク(www.nikkei.com)
数学の難問ABC予想 「証明」にも学界は冷ややか
2021年4月30日 11:00 [有料会員限定] 日経 (編集委員 青木慎一)
数学の世界では、時間がたってから証明が正しかったとわかることがある。例えば、ドイツのヒーグナーは1952年、史上最高の数学者といわれるガウスが予想した「類数問題」に関する証明を発表した。長い間無視されたが、60年代後半に複数の数学者がそれぞれ検討し、一部に問題があるものの本質的に正しかったと証明された。今は定理として名を残す。
(引用終り)
(参考)
URLリンク(ja.wikipedia.org)
ヒーグナー点
ヒーグナー点(ヘーグナー点)(英: Heegner point)とは、モジュラー曲線上の点であって、上半平面の quadratic imaginary point の像となっているようなものである。ブライアン・バーチ (Bryan Birch) により定義され、クルト・ヘーグナー(英語版) (Kurt Heegner) に因んで名づけられた。ヒーグナーは類数 1 の虚二次体上のガウスの予想を証明するために類似のアイデアを用いた。
グロス・ザギエの定理 (Gross & Zagier 1986) は、点 s = 1 における楕円曲線のL関数の微分のことばでヒーグナー点の高さを記述する。とくに楕円曲線の(解析的)階数が 1 であればヒーグナー点は無限位数(したがってモーデル・ヴェイユ群(英語版)の階数は1以上)の曲線上の有理点を構成するのに使うことができる。より一般に、Gross, Kohnen & Zagier (1987) は、ヒーグナー点は各正整数 n に対し曲線上の有理点を構成するのに使うことができこれらの点の高さはウェイト 3/2 のモジュラー形式の係数であることを示した。
つづく

111:132人目の素数さん
21/05/01 08:47:39.05 4gUFX+vb.net
>>110
つづき
コリヴァギン(英語版)は後にオイラー系(英語版)を構成するためにヒーグナー点を用い、それによって階数 1 の楕円曲線に対するバーチ・スウィンナートン=ダイヤー予想の多くを証明した。?寿武(英語版)はグロス・ザキエの定理を楕円曲線からモジュラーアーベル多様体の場合へと一般化した。ブラウンは正標数の大域体上の階数 1 の楕円曲線の多くに対してバーチ・スウィンナートン=ダイヤー予想を証明した (Brown 1994)。
ヒーグナー点は階数 1 の楕円曲線上の、単純な方法では見つけることのできなかった、非常に大きい有理点を計算するのに使うことができる(サーベイは (Watkins 2006) を参照)。アルゴリズムの実装は、MagmaやPARI/GPで可能である。
URLリンク(sub-asate.ssl-lolipop.jp)
miniwiki
類数問題
(虚二次体の)ガウスの類数問題(Gauss class number problem)は、通常に理解されているように、 各々の n ? 1 に対し類数が n である虚二次体の完全なリストをもたらした。この問題の命名は偉大な数学者カール・フリードリヒ・ガウス(Carl Friedrich Gauss)にちなんでいる。この問題は、また、代数体の判別式の項で記述することもできる。実二次体にも関連した問題があり、その振る舞いは
d→-∞
である。
この問題の困難な点は、限界の有効(effective)な計算である。与えられた判別式に対し、類数を計算することは易しく、類数の非有効(ineffective)な下界を求める方法はいくつかあるが(非有効とは、計算はできないが、定数であるということのみわかることを意味する)、しかし有効な限界を求め(リストの完全な証明)は難しい。
Contents
1 元々のガウスの予想
2 本問題の状況
3 類数 1 の判別式のリストアップ
4 現代の発展
5 実二次体
つづく

112:132人目の素数さん
21/05/01 08:48:29.31 4gUFX+vb.net
>>111
つづき
現代の発展
より近年の発展は、n = 1 の場合がクルト・ヒーグナー(English版)(Kurt Heegner)により議論され、モジュラ形式やモジュラ方程式(English版)(modular equation)を使い、そのような体は存在しないことを示した。この仕事は最初は受け入れられなかったが、より最近のハロルド・スターク(English版)(Harold Stark)やブライアン・バーチ(English版)(Bryan Birch)により評価され、ヒーグナーの仕事が理解されるようになった。スターク・ヒーグナーの定理(English版)(Stark?Heegner theorem)やヒーグナー数(English版)(Heegner number)を参照。実際は、同時期にアラン・ベイカー(Alan Baker)は、数体の対数の線型形式上のベイカーの定理として知られていて、完全に異なる方法で解かれている。n = 2 の場合は、少し後でベイカーの仕事の応用として、原理的には解くことが試みられている。(Baker (1990)を参照)
類数 1 の虚二次体の完全リストは、Q(k--√) でこの k は次の中の一つである。
-1,-2,-3,-7,-11,-19,-43,-67,-163.
URLリンク(en.wikipedia.org)
Class number problem
Contents
1 Gauss's original conjectures
2 Status
3 Lists of discriminants of class number 1
4 Modern developments
5 Real quadratic fields
(引用終り)
以上

113:132人目の素数さん
21/05/09 16:44:06.23 6xnjRD2S.net
URLリンク(www.uvm.edu)
KUMMER CLASSES AND ANABELIAN GEOMETRY Date: April 29, 2017.
JACKSON S. MORROW
ABSTRACT. These notes comes from the Super QVNTS: Kummer Classes and Anabelian
geometry. Any virtues in the notes are to be credited to the lecturers and not the scribe;
however, all errors and inaccuracies should be attributed to the scribe. That being said,
I apologize in advance for any errors (typo-graphical or mathematical) that I have introduced. Many thanks to Taylor Dupuy, Artur Jackson, and Jeffrey Lagarias for their wonderful insights and remarks during the talks, Christopher Rasmussen, David Zureick-Brown,
and a special thanks to Taylor Dupuy for his immense help with editing these notes. Please
direct any comments to jmorrow4692@gmail.com.
The following topics were not covered during the workshop:
・ mono-theta environments
・ conjugacy synchronization
・ log-shells (4 flavors)
・ combinatorial versions of the Grothendieck conjecture
・ Hodge theaters
・ kappa-coric functions (the number field analog of etale theta) ´
・ log links
・ theta links
・ indeterminacies involved in [Moc15a, Corollary 3.12]
・ elliptic curves in general position
・ explicit log volume computations
CONTENTS
1. On Mochizuki’s approach to Diophantine inequalities
Lecturer: Kiran Kedlaya . . 2
2. Why the ABC Conjecture?
Lecturer: Carl Pomerance . 3
3. Kummer classes, cyclotomes, and reconstructions (I/II)
Lecturer: Kirsten Wickelgren . 3
4. Kummer classes, cyclotomes, and reconstructions (II/II)
Lecturer: David Zureick-Brown . 6
5. Overflow session: Kummer classes
Lecturer: Taylor Dupuy . 8
6. Introduction to model Frobenioids
Lecturer: Andrew Obus . 11
7. Theta functions and evaluations
Lecturer: Emmanuel Lepage . . 13
8. Roadmap of proof
Notes from an email from Taylor Dupuy . . 17

114:132人目の素数さん
21/07/05 06:06:22.96 tA3B4T+I.net
URLリンク(repository.kulib.kyoto-u.ac.jp)
RIMS K?oky?uroku Bessatsu
B76 (2019), 79?183
宇宙際 Teichm¨uller 理論入門
(Introduction to Inter-universal Teichm¨uller Theory)
By 星 裕一郎 (Yuichiro Hoshi)
P5
§ 1. 円分物
数学 円分物とは何でしょうか. それは Tate 捻り “Zb(1)”のことです.
(引用終り)
円分物は、殆ど”円分体”なのでしょう
ただ、「体」ではないかも知れない
だから、「物」なのか。圏論的な「物」かも
(参考)
URLリンク(ja.wikipedia.org)
円分体
URLリンク(en.wikipedia.org)
Cyclotomic field

115:132人目の素数さん
21/07/05 06:28:26.45 tA3B4T+I.net
>>114
>Tate 捻り
下記Tate twist みたいだね
但し、下記は”an operation on Galois modules”とあるので
星先生の記述とはちょっと違うような
つまり、星先生の記述は、”an operation ”ではなく、それが集まった、例えば群のような集合を意味している気がする
(参考:文字化けは面倒なので修正しませんので、原文ご参照)
URLリンク(en.wikipedia.org)
Tate twist
In number theory and algebraic geometry, the Tate twist,[1] named after John Tate, is an operation on Galois modules.
For example, if K is a field, GK is its absolute Galois group, and ρ : GK → AutQp(V) is a representation of GK on a finite-dimensional vector space V over the field Qp of p-adic numbers, then the Tate twist of V, denoted V(1), is the representation on the tensor product V?Qp(1), where Qp(1) is the p-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure Ks of K). More generally, if m is a positive integer, the mth Tate twist of V, denoted V(m), is the tensor product of V with the m-fold tensor product of Qp(1). Denoting by Qp(?1) the dual representation of Qp(1), the -mth Tate twist of V can be defined as
{\displaystyle V\otimes \mathbf {Q} _{p}(-1)^{\otimes m}.}{\displaystyle V\otimes \mathbf {Q} _{p}(-1)^{\otimes m}.}
References
[1] 'The Tate Twist', in Lecture Notes in Mathematics', Vol 1604, 1995, Springer, Berlin p.98-102

116:132人目の素数さん
21/07/05 06:48:13.60 tA3B4T+I.net
>>115
>Tate twist
下記が参考になりそう
日本語では、圧倒的に情報量が少ない
それと”What is the intuition behind the concept of Tate twists?”と質問する姿勢は見習うべきでしょうね
URLリンク(math.stackexchange.com)
About the definition of l-adic Tate-twist asked Sep 20 '18 at 6:30 Elvis Torres Perez
(抜粋)
Zl(0)=Zl , Zl(1)=lim←?(μli), Zl(n+1)=Zl(n)?ZlZl(1) for n>=0
URLリンク(math.stackexchange.com)
What is the intuition behind the concept of Tate twists? asked Aug 16 '11 at 4:06 Nicole

117:132人目の素数さん
21/07/05 20:32:45.22 tA3B4T+I.net
>>114つづき
URLリンク(repository.kulib.kyoto-u.ac.jp)
RIMS K?oky?uroku Bessatsu
B76 (2019), 79?183
宇宙際 Teichm¨uller 理論入門
(Introduction to Inter-universal Teichm¨uller Theory)
By 星 裕一郎 (Yuichiro Hoshi)
P9
§ 2. フロベニオイドの円分剛性同型
次に, 位相群作用付きモノイド Gk ? O?k
の同型物 G ? M を考察しましょう. この
データ G ? M は, フロベニオイド (Frobenioid ? cf. [6], Definition 1.3) と呼ばれ
る数学的対象のある一例と等価なデータとなっています. こういったフロベニオイド (の
ある一例と等価なデータ ? 簡単のため, 以下, もうこれをフロベニオイドと言い切っ
てしまいますが) が与えられたとき, その “G” の部分を エタール的 (´etale-like ? cf.,
e.g., [6], Introduction, §I4) 部分と呼び, そして, その上, “M” の部分を Frobenius 的
(Frobenius-like ? cf., e.g., [6], Introduction, §I4) 部分と呼びます. (この場合の) エ
タール的部分は, 位相群で, 出自は Galois 群ですから, つまり, “対称性” であり, 感覚と
しては “質量のない”, “実体のない” (すなわち, “夢のような”, “仮想的な”) 対象です. 一
方, (この場合の) Frobenius 的部分は, 位相モノイドで, 出自は適当な数の集まりですから,
感覚としては “質量のある”, “実体を持つ” (すなわち, “現実に存在する”, “実在する”) 対
象です.
さて, 上のようなフロベニオイド G ? M が与えられますと, さきほど述べたとお
り, (G は Gk の同型物ですので) 単遠アーベル幾何学的に G から G ? Λ(G) という円
分物を復元/構成することができます.
つづく

118:132人目の素数さん
21/07/05 20:33:07.84 tA3B4T+I.net
>>117
つづき
一方, M は O?kの同型物ですから, n 倍写像の核M[n]def = Ker(n: M → M) は μn(k) の同型物となり, その n に関する逆極限を取ること
で, Λ(M)def = lim←?nM[n] という Λ(k) の同型物, つまり, 円分物が得られます. G ? Λ(G)
の方はエタール的部分から構成したので “エタール的円分物” と呼び, G ? Λ(M) の方
は Frobenius 的部分から構成したので “Frobenius 的円分物” と呼ぶことにしましょう.
この考察により, 1 つのフロベニオイド G ? M から, エタール的円分物 G ? Λ(G) と
Frobenius 的円分物 G ? Λ(M) という 2 つの円分物が得られました.
この (本来はまったく無関係な) 2 つの円分物に関して, 以下の事実が知られていま
す. ([10], Remark 3.2.1, を参照ください.)
G ? M というデータから, 関手的に, G 同変な同型 Λ(M)?→ Λ(G) ? つま
り, Frobenius 的円分物とエタール的円分物との間の円分剛性同型 ? を構成
することができる. また, この円分剛性同型は, G ? M が “環論的な設定” から
生じている場合には, 従来の円分物の間の同一視と一致する.
ここに登場する円分剛性同型は, しばしば “局所類体論を用いた円分剛性同型”, あるいは,
“古典的な円分剛性同型” などと呼ばれています.
(引用終り)

119:132人目の素数さん
21/07/05 20:47:40.66 tA3B4T+I.net
URLリンク(www.math.nagoya-u.ac.jp)
2001年度講義内容要約
理学部数理学科
多元数理科学研究科
大学院
数論特別講義 II 望月 新一(京都大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
(11 月 19 日〜23 日) 「楕円曲線の Hodge-Arakelov 理論における遠アーベル幾何」
P278
科目名 数論特別講義 II 担当教官 望月 新一
サブタイトル  楕円曲線の Hodge-Arakelov 理論における遠アーベル幾何
対象学年 大学院 2単位 選択
教科書 なし
参考書 後述の「参考文献」参照
予備知識
[Hh] 程度のスキーム論と,[Mn] 等に解説してあるエタール・サイトや代数的基本群の基礎.
[Hh] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag (1977).
[Mn] J. S. Milne, Etale Cohomology ´ , Princeton Mathematical Series 33, Princeton University Press (1980).
つづく

120:132人目の素数さん
21/07/05 20:47:58.33 tA3B4T+I.net
つづき
講義内容
Grothendieck の「遠アーベル哲学」とは,数体のような数論的な体の上で定義され,かつある幾何的な
条件を満たす代数多様体の幾何は,その「数論的基本群」に忠実に反映されるであろうという考え方を出発
点とした数論幾何に対する新しいアプローチである.この「哲学」は1980年代初頭,Grothendieck に
よって提案されたが,実は,そのルーツはそれ以前に代数的整数論の観点から発見されていた Neukirch-内
田の定理にまで遡る.更に,1990年代に入ってから,遠アーベル幾何では新しい結果が次々と得られ
(参考文献の [12], [19] を参照),Grothendieck が立てた主な予想の一部が,かなり強い形で肯定的に解決さ
れた.本講義では,遠アーベル幾何の survey 的な紹介を目標の一つとするが,ただの抽象的な定理群とし
て扱うのではなく,最近になって明らかになった,楕円曲線の Hodge-Arakelov 理論との関係に注目しなが
ら話を進めていく.この関係が示唆する遠アーベル幾何の新しい解釈によって,当初の Grothendieck の期
待でもあった,Diophantus 幾何への応用の可能性が開けてくるものと思われる.
I: 遠アーベル幾何入門 §1. 代数的基本群とは何か? §2. Grothendieck の anabelian 哲学 §3. 遠アー
ベル幾何の代表的な定理 §4. 局所体の遠アーベル性
II: Hodge-Arakelov 理論入門 §1. 基本定理 §2. 無限遠点での状況 §3. 正標数的手法による証明
III: basepoint, core, commensurator の話 §1. anabelioid というもの §2. core §3. 正則構造 §4. 通
約端末性 §5. global multiplicative subspace へのナイーヴなアプローチ
IV: universe, 同期化 §1. 独立な宇宙の導入 §2. 半楕円 orbicurve の通約端末性 §3. 無限遠点におけ
る通約端末性 §4. 正則局所化の圏 §5. 主結果
講義の感想
講義の最中,教官だけでなく,何回にもわたり,学生の方からも非常に有意義な質問や指摘が出され,講
義全体の質に大きく寄与したことは,印象的でした.
(引用終り)
以上

121:132人目の素数さん
21/07/05 23:15:45.59 tA3B4T+I.net
宇宙、inter-universal
URLリンク(www.kurims.kyoto-u.ac.jp)(Muroran%202002-08).pdf
Anabelioid の幾何学と Teichmuller 理論 望月 新一 (京都大学数理解析研究所) 2002年8月
(抜粋)
§1. p進双曲曲線を他宇宙から見る
我々が通常使用している、スキームなどのような集合論的な数学的対象は、実は、議論を開始した際に採用された「集合論」、つまり、ある Grothendieck 宇宙の選択に本質的に依存しているのである。この「1つの集合論」の採用は、もっと具体的にいうと、
「あるラベル(=議論に登場する集合やその元の名前)のリストの選択」
と見ることもできる。すると、次のような問い掛けが生じる:
問: スキームのような集合論的幾何的対象を別の集合論的宇宙から見たら、
つまり、たまたま採用したラベルたちを取り上げてみたら、その幾何的対象はどのように見えるか?
つづく

122:132人目の素数さん
21/07/05 23:16:04.54 tA3B4T+I.net
>>121
つづき
このように、宇宙を取り替えたりするような作業を行なう際、別の宇宙にも通じる数学的対象を扱うようにしないと、議論は意味を成さなくなるが、(本稿では省略するが)様々な理由によって、圏は、そのような性質を満たす。一般に、違う宇宙にも通じるものをinter-universal と呼ぶことにするが、「圏」というものは、最も基本的かつ原始的な inter-universal な数学的対象ということになる。
さて、スキームを他宇宙から見たらどんな風に見えるか、という問いに答えるためには、スキームを、inter-universal に表現する必要がある。これには様々な手法があるが、本稿では、次のものを取り上げる(別の手頃な例については、「Mzk7] を参照):
Et(X) {Xの有限次エタール被覆の圏 }
(ただし、X は、連結なネータ・スキームとする。) 副有限群 G に対して B(G) を、G の連続な作用をもつ有限集合の圏、というふうに定義すると、Et(X) という圏は、B(mュ(X)) (ただし、(X) は、Xの代数的基本群とする)と同値になる。
ここでは、B(G) を、1つの幾何的対象とみなし、anabelioid と呼ぶことにする。実は、B(G) は、「連結な anabelioid」になるが、一般には、複数の連結成分をもつanabelioid を扱うこともある(詳しくは、「Mzk8] を参照)。anabelioid の理論の大きなテーマの一つは、通常スキームに対して行なうような様々な幾何的操作を、(Et(X)のようにスキームから生じたものかどうかとは関係なく) anabelioid のみの世界に
おいていわば“native' に行なうことである。このテーマの最も基本的な例の一つは、有限次 エタール被覆の定義である。連結な anabelioid 間の有限次エタール被覆は、
B(H) → B(G)
(ただし、G は副有限群、H はその開部分群。なお「射」は圏の間の関手と逆向きに書く。)と同型な射として定義される。
(引用終り)
以上

123:132人目の素数さん
21/07/06 07:31:37.30 TlVKjijJ.net
>>122
「ここでは、B(G) を、1つの幾何的対象とみなし、anabelioid と呼ぶことにする」(下記)
(引用開始)
ここでは、B(G) を、1つの幾何的対象とみなし、anabelioid と呼ぶことにする。実は、B(G) は、「連結な anabelioid」になるが、一般には、複数の連結成分をもつanabelioid を扱うこともある(詳しくは、「Mzk8] を参照)。anabelioid の理論の大きなテーマの一つは、通常スキームに対して行なうような様々な幾何的操作を、(Et(X)のようにスキームから生じたものかどうかとは関係なく) anabelioid のみの世界に
おいていわば“native' に行なうことである。このテーマの最も基本的な例の一つは、有限次 エタール被覆の定義である。連結な anabelioid 間の有限次エタール被覆は、
B(H) → B(G)
(ただし、G は副有限群、H はその開部分群。なお「射」は圏の間の関手と逆向きに書く。)と同型な射として定義される。
(引用終り)

124:132人目の素数さん
21/07/06 23:41:10.99 TlVKjijJ.net
URLリンク(www.kurims.kyoto-u.ac.jp)
望月 論文
 講演のアブストラクト・レクチャーノート
URLリンク(www.kurims.kyoto-u.ac.jp)(Meijidai%202002-03).pdf
Anabelioidの幾何学 2002年3月
Page 1
ここで検証する問題は:前述の ‘局所的な乗法的部分加群’ を、 ‘大域的な乗法的部分加群’ として F 全体に延長することはできないか?といぅことである
この問題を克服するためには、視点を抜本的に変えてみる必要がある? 結論からいぅと、 ‘正しい視点’ は次の内容からなっている:(i) 大域的な乗法的部分群スキ?ムを、元々の作業の場としていた集合論的な ‘宇宙’ において構成することをひとまず諦め、全く別の、独立な宇宙における、元の対象たち E, F, K 等の ?ピ? Ec, Fc, Kc に対する乗法的部分群スキ?ムの構成を目指す?(ii) 元々の宇宙の K の、 pF の上の素点たち pK を、新しい宇宙の Kc の base-point を parametrize するものと見る?つまり、?言でいぅと、 K の basepoint を動かすことが、肝心である?動かすことによって、元の宇宙における LK と新しい宇宙の (LK)c の間の、相対的な位置が移動することとなり、旨くその対応する移動を設定することによって、?pK が表している Kc の basepoint から、 LK に対応する (LK)c を眺めてみると、その (LK)c は、?∀ pK に対して) 常に乗法的になる?」といぅ?見??古典的な理論の常識からして)不思議ながらも、実は、ある意味では?同義反復的」な状況を実現することができる
つづく

125:132人目の素数さん
21/07/06 23:41:35.13 TlVKjijJ.net
>>124
つづき
§2. anabelioid と core
Anabelioid ????望月新? ?京都大学数理解析研究所)2002年3月§1. 新技術導入の動機§2. anabelioid と core§3. 数論的な anabelioid の例§1. 新技術導入の動機F を数体とし、 E をその上の楕円曲線とする?素数 l ? 3 に対し、簡単のため、Spec(F) 上の、 l 等分点による群スキ?ム E[l] から定まるガロア表現GFdef= Gal(F /F) → GL2(Fl)が全射となることを仮定する?次に、 E が bad, multiplicative reduction を持つ?数体 F の)素点 pF を考える? F を pF で完備化して得られる体を FpF と書くとすると、 FpF の上では楕円曲線EFpFdef= E ?F FpFの ‘Tate curve’ としての表示 ‘Gm/qZ’ より定まる、 canonical な‘乗法的な’ 部分群スキ?ムμl ⊆ E[l]|FpFがある?ここで検証する問題は:前述の ‘局所的な乗法的部分加群’ を、 ‘大域的な乗法的部分加群’ として F 全体に延長することはできないか?といぅことである?そのよぅな延長を安直なアプロ?チで作ろぅとすると、直ちに本質的な障害にぶち当たる?例えば、 K def= F(E[l]) を l 等分点たちの、 F 上の最小定義体とし、 K まで上がって作業してみるとする?すると、 E[l]|K の部分群スキ?ムとして、 ‘μl’ を K 全体の上で定義されるものLK ⊆ E[l]|Kに伸ばすことができるが、その LK は、
つづく

126:132人目の素数さん
21/07/06 23:43:55.67 TlVKjijJ.net
>>125
つづき
K の殆んどの bad, multiplicative reduction の素点 pK においては、その素点における局所理論から生じる ‘乗法的な部分群スキ?ム’ と ?致しない?この問題を克服するためには、視点を抜本的に変えてみる必要がある? 結論からいぅと、
‘正しい視点’ は次の内容からなっている:
(i) 大域的な乗法的部分群スキ?ムを、元々の作業の場としていた集合論的な ‘宇宙’ において構成することをひとまず諦め、全く別の、独立な宇宙における、元の対象たち E, F, K 等の ?ピ? Ec, Fc, Kc に対する乗法的部分群スキ?ムの構成を目指す?
(ii) 元々の宇宙の K の、 pF の上の素点たち pK を、新しい宇宙の Kc の base-point を parametrize するものと見る?つまり、?言でいぅと、 K の basepoint を動かすことが、肝心である?動かすことによって、元の宇宙における LK と新しい宇宙の (LK)c の間の、相対的な位置が移動することとなり、旨くその対応する移動を設定することによって、?pK が表している Kc の basepoint から、 LK に対応する (LK)c を眺めてみると、その (LK)c は、?∀ pK に対して) 常に乗法的になる?」といぅ?見??古典的な理論の常識からして)不思議ながらも、
実は、ある意味では?同義反復的」な状況を実現することができる?§2. anabelioid と core以上の議論は哲学的な要素も含んでいるが、これを厳密な数学として処理するためには、新しい技術の導入が必要となる?この場合、中心となる新技術は、 ‘anabelioid’の理論である?‘anabelioid’ とは、§1 の議論を行なぅ際に用いなければならない幾何的な対象のことである?この幾何的対象は、スキ?ムと違い、 topos、即ち 圏 であるため、 an-abelioid 全体の ‘圏’ といぅものは、 2-category になってしまぅ?連結なときは、 anabe-lioid は [SGA1] に登場する ‘Galois category’ といぅ、今では40年以上の歴史を持つ馴染み深いものと同じである?つまり、連結な anabelioid は、∃副有限群 G に対してB(G)def= {G の連続な作用付きの有限集合たちがなす圏と同値な圏のことである?
(引用終り)
以上

127:132人目の素数さん
21/07/08 20:20:58.92 Q70nFO4E.net
URLリンク(www.kurims.kyoto-u.ac.jp)
望月 論文
 講演のアブストラクト・レクチャーノート
URLリンク(www.kurims.kyoto-u.ac.jp)
数体と位相曲面に共通する「二次元の群論的幾何」(2012年8月の公開講座)
(抜粋)
要約
有理数体Qのような「数体」と、複数のドーナツの表面を合体させたような形をしたコ
ンパクトな「位相曲面」は-一見して全く異質な数学的対象であり、初等的な可換環諭、つ
まり、「加減乗除」が可能な数学的対象としての構造の理論から見ても直接的に関連付ける
ことは難しい。しかし数体の拡大体の対称性を記述する「絶対ガロア群」と、コンパクト
な位相曲面の有限次の被覆の対称性を統制する「副有限基本群」を通して両者を改めて眺
めてみると、「二次元的な群論的絡まり合い」という形で大変に興味深い構造的な類似性
が浮かび上がってくる。本稿では様々な側面におけるこの種の類似性に焦点を当てながら、
数体と位相曲面の基礎的な理論について解説する。
§4. 数 と位相曲面の「絡まり合いの現場」数体上の代数曲線
つづく

128:132人目の素数さん
21/07/08 20:21:23.67 Q70nFO4E.net
>>127
つづき
§4.2.副有限基本群への絶対ガロア群の忠実な外作用
同種の「単射性」に関する定理は、「穴が開いている」=「コンパクトでない」双曲的
代数曲線の場合には、既に(Mtmlで証明されていて、[MtmlもIHMIも、一番最初にBelyi
氏によって発見された、射影直線P1から三点を抜いて得られる双曲的曲線の場合の単射
性に帰着させることによってより一般的な双曲的代数曲線の場合の単射性を証明している。
一方、上記の定理のようにコンパクトな双曲的代数曲線の場合にこの種の単射性を示すこ
との意義は、§3.2及び§3.3で解説したように、
コンパクトな種数9の位相曲面と数体の絶対ガロア群には、
「二次元的な群論的絡まり合い」という
深い構造的類似性があり、そのような類似性を持つ、一見全く異質な
数論的な対象と位相幾何学的な対象を関連付けていることにある。
つまり、上記の定理は、数諭的な方の「二次元的な群論的絡まり合い」が、その自然な外
作用によって位相幾何学的な方の「二次元的な群論的絡まり合い」に忠実に表現されてい
ることを言っているのである。別の言い方をすると、純粋に「可換環論」の視点(=つま
り、もっと具体的な言葉でいうと、初等的な加減乗除の範晴)で考察すると、数体と双曲的
代数曲線はいずれも次元1の対象であり、しかもその環論的な構造(=つまり、正に「加
減乗除」の構造)は全く異質であるが、ガロア群や副有限基本群の「二次元的な群論的絡
まり合い」を通して両者を考察することによって、(§3.2及び§3.3で解説したような)深
い構造的な類似性が浮かび上がり、また上記の定型の単射性によってその両者の繋がりを
極めて明示的な形で定式化することが可能になる。
(引用終り)

129:132人目の素数さん
21/07/10 19:06:23.96 ang8zfcy.net
>>772
どうも
スレ主です
レスありがとう
1.Robertとか、woitとか、間違った人のサイトを見ても、間違った情報しかないと思うよ
2.それよか、IUTを読むための用語集資料スレ2
 スレリンク(math板)
 に情報を集めているので、そこらも見てちょうだい
3.あと、下記を見る方が良いと思うよ
 望月サイトのURLリンク(www.kurims.kyoto-u.ac.jp)
 URLリンク(www.kurims.kyoto-u.ac.jp)
 望月論文
  講演のアブストラクト・レクチャーノート
[1] 実複素多様体のセクション予想と測地線の幾何. PDF
[2] p進Teichmuller理論. PDF
[3] Anabelioidの幾何学. PDF
[4] Anabelioidの幾何学とTeichmuller理論. PDF
[5] 離散付値環のalmost etale extensions(学生用のノート). PDF
[6] 数体と位相曲面に共通する「二次元の群論的幾何」(2012年8月の公開講座). PDF
 URLリンク(www.kurims.kyoto-u.ac.jp)
 望月出張講演
[8] 楕円曲線のHodge-Arakelov理論における遠アーベル幾何、数論的微分とは何か? (名古屋大学
   2001年11月). PDF
[9] 数論的 log scheme の圏論的表示 (九州大学 2003年7月). 田口さんのノート
[10] 数論的log schemeの圏論的表示から見た楕円曲線の数論 (北海道大学 2003年11月). PDF
[11] 数論的Teichmuller理論入門 (京都大学理学部数学教室 2008年5月).  月 火 水 木 金 概要 
   レポート問題 談話会 アブストラクト
[12] 宇宙際タイヒミューラー理論への誘(いざな)い (京都大学数理解析研究所 2012年12月) PDF
[13] 宇宙際タイヒミューラー理論への誘(いざな)い 《拡大版》 (東京大学 2013年06月) PDF
[14] 数論幾何の風景 ― 数の加減乗除から対称性の幾何まで (京都大学2013年11月) PDF

130:132人目の素数さん
21/07/10 19:07:02.36 ang8zfcy.net
>>129
誤爆すまん

131:132人目の素数さん
21/07/18 09:36:20.15 ycKpVVK0.net
prime-strip
多輻的アルゴリズム
URLリンク(nagasm.org)
宇宙際 Teichm¨uller 理論入門
星 裕一郎 (京都大学 数理解析研究所)
2015 年 11 月
P19
§6 では v ∈ V(F) を有限素点ということにしていましたが, この対象 D?
v
(または F

v
; F
?×μ
v
; Dv;
Fv) には “無限素点版” もあり, それらを集めることで得られる対象 {D?
v }v∈V(F )
, (または {F?×
v }v∈V(F )
;
{F?×μ
v }v∈V(F )
; {Dv}v∈V(F )
; {Fv}v∈V(F )) の同型物は, D? (または F?×; F?×μ; D; F) 素点縞 (D?-
(respectively, F
?×-; F
?×μ-; D-; F-) prime-strip ? cf. [10], Definition 4.1, (iii) (respectively, [11],
Definition 4.9, (vii); [11], Definition 4.9, (vii); [10], Definition 4.1, (i); [10], Definition 5.2, (i)) と呼ばれ
ます. (正確には, F をその適当な拡大体に取り替えたり, また, より重要なこととして, 添字の “v” の範囲を,
その拡大体のすべての素点とするのではなく, その適当な部分集合に制限する, といった修正を行う必要があ
るのですが ? これについては §17 で改めて説明します.) 少なくとも有限素点では, “F 系” の対象は (付
加構造付き) フロベニオイドであり, “D 系” の対象は位相群 (と等価なデータ) です. また, “?” という記号
は, 宇宙際 Teichm¨uller 理論では, “単解的” を表す記号となっています4
つづく

132:132人目の素数さん
21/07/18 09:36:41.02 ycKpVVK0.net
>>131
つづき
7 多輻的アルゴリズム
宇宙際 Teichm¨uller 理論では, “多輻的アルゴリズム” という特別な性質を満たすアルゴリズムが重要な役
割を果たします. §8 で行う宇宙際 Teichm¨uller 理論の主定理の “ミニチュア版” の説明のために, この §7
では, その “多輻的アリゴリズム” という概念についての簡単な説明を行います. (詳しくは, 例えば, [11] の
Example 1.7 から Remark 1.9.2 までの部分を参照ください.)
まず最初に, 次のような設定を考察しましょう. 輻的データ (radial data ? cf. [11], Example 1.7, (i))
と呼ばれるある数学的対象が与えられているとします. 次に, その輻的データからアルゴリズム的に構成でき
る (下部的) 対象である コア的データ (coric data ? cf. [11], Example 1.7, (i)) が与えられているとし
ます. このような設定を 輻的環境 (radial environment ? cf. [11], Example 1.7, (ii)) と呼びます. 具体
的には, 例えば, 以下のような輻的環境の例を考えることができます:
(a) “輻的データ” として, 1 次元複素線型空間 C (の同型物) を, “コア的部分” として, 輻的データであ
る C (の同型物) から “その正則構造を忘れる” というアルゴリズムによって得られる下部 2 次元実線型空間
R
?2
(の同型物) を採用する.
(引用終り)
以上

133:132人目の素数さん
21/07/18 11:26:10.63 ycKpVVK0.net
URLリンク(repository.kulib.kyoto-u.ac.jp)
RIMS K?oky?uroku Bessatsu
B72 (2018), 209?307
続・宇宙際 Teichm¨uller 理論入門
星 裕一郎
P227
§ 6. 行進
しかしながら, 以下の理由によって, 我々は, この “もっとも安直なアプローチ” を
採用することができません. このアプローチを採用すると, 直前の図が示すように, F
?
l =
{|1|, . . . , |l
?|} の各元に対して, 対応する J の元として, ♯J = l
? 通りの可能性を考慮しな
ければならなくなります. その結果, 全体として, J と F
?
l との関連として, ♯J♯J = (l
?)
l
?
通りの可能性を考慮しなければなりません. 一方, この可能性の個数 ? つまり, 不定
性 ? は, 我々の目標の観点からは多過ぎます. 特に, 楕円曲線の高さの評価の観点か
ら考えますと, この過大な不定性を許容してしまうと, 所望の不等式よりも “弱い不等式”
しか得ることができなくなってしまうのです.
上述の問題を解決するために, 行進 (procession ? cf. [7], Definition 4.10) とい
う概念を導入しましょう.
行進を考えた場合の方が, ただの抽象的な集合と見做した場合よりも, ラベルの
集合に関する不定性が小さくなる
という重要な事実を観察しました. 行進という概念を用いることの別の利点として,
零ラベルの隔離
という点も挙げられます. |T| をただの集合と見做す, つまり, |T| を, |T| の自己全単射全
体のなす群の作用という不定性のもとで扱う場合, 零ラベル 0 ∈ |T| とその他の元 ∈ T
?
を区別することは不可能です. 一方, 行進を考えた場合, (“S
±
1
” というデータによって)
0 ∈ |T| は “特別な元” ということになり, その他の元 ∈ T
? との区別が可能となります.
そして, 実際, 宇宙際 Teichm¨uller 理論において,
零ラベルは単数的/コア的なラベル, 非零ラベルは値群的/輻的なラベル
という観察のとおり, 零ラベルと非零ラベルは, まったく異なる役割を果たします. (§4,
(d), や [2], §21, の前半の議論を参照ください.) この観点から, “零ラベルの隔離可能性”
は重要です. (詳しくは [8], Remark 4.7.3, (iii), を参照ください.)

134:132人目の素数さん
21/07/18 12:35:54.18 ycKpVVK0.net
Corollary 3.12, の証明関連
不等式の導出
URLリンク(repository.kulib.kyoto-u.ac.jp)
RIMS K?oky?uroku Bessatsu
B72 (2018), 209?307
続・宇宙際 Teichm¨uller 理論入門
星 裕一郎
P297
§ 25. Θ
×μ
LGP リンクと両立的な多輻的表示とその帰結
P301
この §25 の最後に, 上述の多輻的 Kummer 離脱を用いた q 標対象の次数の計算に
ついて, 簡単に説明しましょう. (詳しくは, [9], Corollary 3.12, の証明を参照ください.)
この §25 の冒頭の Θ
×μ
LGP リンクが定める同型 † 0
C
?
LGP
?→ ‡ 0
C
?
△ は,
† 0Θ 標対象を ‡ 0
q 標
対象に移します. (§24, (a), を参照ください.) したがって, §14, (e), (i), から, 所望の次数
deg(‡ 0
q 標対象) を,
† 0Θ 標対象の ? “† の側” の正則構造の観点からではなく ?
“‡ の側” の正則構造の観点からの対数体積を用いて計算することが可能です. 一方, 多輻
的 Kummer 離脱によって, 不定性 (Ind1), (Ind2), (Ind3) を認めれば, Θ×μ
LGP リンクが誘
導する同型 † 0F
?×μ

?→ ‡ 0F
?×μ
△ (§24, (b), を参照) と両立する同型 † 0RFrob
?→ ‡ 0RFrob
が得られます.
vol(‡ 0Θ) ∈ R ∪ {∞}
を, 不定性 (Ind1), (Ind2), (Ind3) の作用による ‡ 0Θ 標対象の軌道の和集合の (“‡ の側”
の正則構造による) 正則包 (holomorphic hull ? cf. [9], Remark 3.9.5) ([2], §12, の
後半の議論を参照) の行進正規化対数体積として定義しましょう. すると, 両立的同型
† 0RFrob
?→ ‡ 0RFrob の存在から,
† 0Θ 標対象の対数体積は, vol(‡ 0Θ) 以下とならざるを得
ません. したがって, 結論として, 不等式
vol(‡ 0Θ) ≧ deg(‡ 0q 標対象)
が得られます.

135:132人目の素数さん
21/07/18 15:26:20.19 ycKpVVK0.net
URLリンク(www.youtube.com)
宇宙際タイヒミュラー理論(IUT理論)に関する2つのアニメーション
1,213 回視聴2020/04/11
基底状態のセシウムさん
カラー(khara,inc.)制作のIUTeich関係のCG動画楽しみ
URLリンク(www.kurims.kyoto-u.ac.jp)
・動画元URL
Animation 1 - URLリンク(www.kurims.kyoto-u.ac.jp)
IUTeichに関するアニメーション(=[IUTchIII], Theorem Aの内容に対応)
 "The Multiradial Representation of Inter-universal Teichmuller Theory"を公開。
石碑版: 「復元」 フェードアウト版 (avi wmv) 
Animation 2 - URLリンク(www.kurims.kyoto-u.ac.jp)(animation).mp4
第二の、IUTeichに関するアニメーション(=[IUTchIII], Theorem Bの内容に対応)
 "Computation of the log-volume of the q-pilot via the multiradial representation"
 を公開。


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

243日前に更新/383 KB
担当:undef