なんで掛け算の順序を ..
[2ch|▼Menu]
58:現代数学の系譜 雑談
20/05/10 23:21:12.73 mjl0bfS3.net
>>57
つづき
実数体 R と p 進数体 Qp をひとまとまりにしたアデールの概念が扱われることもある。有理数体のアデール AQ は簡単に言えば、実数体 R と全ての素数 p にわたる p 進数体 Qp との位相まで込めた直積である。
有理数体 Q はそのアデール AQ のなかに(対角線に)埋め込むことができる。有理数体をアデールに埋め込んで考えることは、有理数体を素数(と無限遠)を点とする空間 Spec Z 上の代数関数体として捉えるという視点を与える。
ここでは、Qp は有限素点 p における局所的な振る舞いを、R は無限遠での振る舞いを表すものとして並行に扱われる。このような解析的な取り扱いにおいては、p 進展開はテイラー展開の類似物であると考えられる。
実数体と p 進数体は有理数体の完備化であるが、一般の代数体でも同様の完備化が考えられる。
定義
有理数体 Q の p 進付値が定める距離(p 進距離)dp による完備化を Qp と表し、その元を p 進数と呼ぶ。Qp は Q における四則演算と距離空間の位相とを自然に拡張した演算と、p 進距離により定まる位相構造とを持つ。
この四則演算に関して Qp は体をなし、演算はこの距離位相に関して連続である。この両立する演算と位相を持つ位相体 Qp を p 進数体という。
p 進数 x は、その付値 vp(x) が 0 以上であるとき、p 進整数と呼ばれる。p 進整数の全体の成す集合
{\displaystyle \{x\in \mathbb {Q} _{p}\mid v_{p}(x)\geqq 0\}}{\displaystyle \{x\in \mathbb {Q} _{p}\mid v_{p}(x)\geqq 0\}}
を Zp で表す。Zp は環を成し、p 進整数環と呼ばれる。
p 進数体の性質
p 進数が p 進展開と一対一に対応することから、p 進数体は連続体濃度を持つ。Q を部分体として含むので、標数は 0 である。どのように順序を入れても順序体にはできない。
実数体 R の代数閉包(複素数体 C)が二次拡大で完備であるのに対し、p 進数体 Qp の代数閉包 Qp は無限次拡大でしかも完備ではない。その完備化は代数閉体であって、Cp と表される。
これは複素数体 C と体として同型であるが、同型写像の存在は選択公理に依存しており、具体的に同型写像を与えることはできない。
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

1397日前に更新/54 KB
担当:undef