面白い問題おしえて〜 ..
[2ch|▼Menu]
936:△ABCの面積は、 △ABC=(√3/4)(√2)^2 =√3/2 △ABCの重心をGとして、 四面体ABCDの△ABCを底面とした頂点Dの高さDGは0も含めいろいろな値を無作為にとるが、もっともとり得る値は、球の中心をOとしてOGと等しい。 つまり四面体ABCDの体積のもっともとり得る値は、3つの稜線のおのおのが直交し長さが1の三角錘の体積と等しい。




次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

12日前に更新/404 KB
担当:undef