大学学部レベル質問スレ 11単位目 at MATH
[2ch|▼Menu]
[前50を表示]
500:132人目の素数さん
18/05/27 21:47:57.70 YT8PnXu1.net
>>479
返信がおくれてすみません。
ようやくわかってきた気がします。
準同型の個数が共役の個数なので
共役のうち異なる元の数をかぞえあげれば・・・
という感じでしょうかね。
まだ全体像が見えてないですけど
これならいけるかもです
ありがとうございました!

501:132人目の素数さん
18/05/27 22:00:46.89 CGYiTgTM.net
>>483

502:132人目の素数さん
18/05/27 22:02:36.48 JlVk5Goy.net
>>485
わからなかったんですね

503:132人目の素数さん
18/05/27 22:05:02.29 CGYiTgTM.net
>>486

504:132人目の素数さん
18/05/27 22:07:20.65 JlVk5Goy.net
>>487
わからないんですね

505:132人目の素数さん
18/05/28 02:28:11.89 QlCcg7gT.net
>>470 >>484
分離拡大あたりを勉強中かな?お疲れさん。
雪江代数学2の179ページ補題3.3.16を参照しなされ。
明快な答えがそこにある。
>>479
その議論で言えるのはK⊂M⊂Lが有限次分離拡大である場合だけでは?

506:132人目の素数さん
18/05/28 07:59:43.68 7DoP0x8Y.net
g(x) が x = a で n 回微分可能とする。
b := g(a) とする。
f(x) が x = b で n 回微分可能とする。
このとき、
f(g(x)) は


507:x = a で n 回微分可能であることを示せ。



508:132人目の素数さん
18/05/28 08:22:47.91 kdVc2zFn.net
合成関数の微分公式より明らか

509:132人目の素数さん
18/05/28 08:27:36.61 7DoP0x8Y.net
f(x) は x = a を含むある開区間で定義されているとする。
f(x) は x = a で微分可能とする。
このとき、
f(x) は x = a を含むある開区間で微分可能であるか?

510:132人目の素数さん
18/05/28 08:32:04.36 kdVc2zFn.net
反例
(-1,1)
y=|x|
a=1/2

511:132人目の素数さん
18/05/28 08:37:42.76 7DoP0x8Y.net
f(x) = |x| は x = 1/2 を含む開区間 (0, 1) で微分可能だと思います。

512:132人目の素数さん
18/05/28 08:39:46.25 7DoP0x8Y.net
f(x) が x = a で2回微分可能というとき、
当然、
f(x) は x = a を含むある開区間で定義されている必要があります。
f'(x) も x = a を含むある開区間で定義されている必要があります。
よって、
f(x) は x = a を含むある開区間で微分可能でなくてはなりませんよね?

513:132人目の素数さん
18/05/28 09:04:00.45 kdVc2zFn.net
>>492
fは(-1,1)で定義された関数で
f(0)=0
f(x)=1/n(n≦1/|x|<n+1)
を満たす
(f(h)-f(0))/h=1/nh
ただし、n≦1/h<n+1
1≦1/(nh)<1+1/n
0≦(f(h)-f(0))/h-1<1/n
ε=1/Nととると、h<εに対して
0≦(f(h)-f(0))/h-1<1/n<1/N=ε
よって、f'(0)=1
しかし、どのようなx=0を含む開区間をとっても、ある点x=1/nが存在して、この点においては不連続となるため微分不可

514:132人目の素数さん
18/05/28 09:07:50.47 kdVc2zFn.net
>>495
はい

515:132人目の素数さん
18/05/28 11:17:21.84 IsvYPSAT.net
>>495
なんで2回微分可能という条件つけんの?

516:132人目の素数さん
18/05/28 15:02:24.20 LZ7thAEI.net
>>489
分離閉包とってるからいけるのでは?

517:132人目の素数さん
18/05/28 20:30:36.87 35mGdcfM.net
ある同値関係R_1,R_2に対して以下の関係が同値関係かどうか示せという問題なのですが、
R_1 ∪ R_2に関して。反射律、対称律は導けますが、推移率に関してがわかりません
x(R_1 ∪ R_2)y ∧ y(R_1 ∪ R_2)z
⇔ (xR_1y ∨ xR_2y) ∧ (yR_1z ∨ yR_2z)
とは、つまるところxR_1yとyR_2zにおいても推移性があるのかどうか。この推移性があることで推移律は満たしていないかどうか。
教えてくださいお願いします

518:132人目の素数さん
18/05/28 21:47:59.49 1GO2+eBu.net
>>500
≡(mod2)∪≡(mod3)
2,4,7で考えてみたら?

519:132人目の素数さん
18/05/29 16:13:23.68 LrJ8VHO5.net
やはり、推移律は成り立たなさそうです
ありがとうございました

520:132人目の素数さん
18/05/29 19:11:46.60 f5vIlzv/.net
f が全実数で微分可能な関数で lim f(x) = 0 as x → ∞, lim f(x) = 0 as x → -∞ なら、
f'(x) = 0 となる点 x が存在することを示せ。

521:132人目の素数さん
18/05/29 19:12:40.90 f5vIlzv/.net
f が全実数で微分可能な関数で lim f(x) = 0 as x → ∞, lim f(x) = 0 as x → -∞ なら、
f'(x) = 0 となる点 x が存在することを示せ。
f(x) ≡ 0 の場合には↑の命題は成り立つ。
f(x) ≠ 0 となる x が存在すると仮定する。
f(b) ≠ 0 とする。
c < x ⇒ |f(x)| < |f(b)| となるような c が存在する。
b ≦ c である。
x < a ⇒ |f(x)| < |f(b)| となるような a が存在する。
a ≦ b である。
a ≦ b ≦ c である。
a = c のときには、 すべての x に対して |f(x)| ≦ |f(b)| であるから、
f(x) は x = b で最大値または最小値をとる。
ロルの定理の証明と同様の論法により、 f'(b) = 0 である。
よってこの場合には、↑の命題は成り立つ。
a < c の場合を考える。
f(x) は [a, c] で連続だから [a, c] で [a, c] 内での最大値 M および最小値 m をとる。
K := max{|M|, |m|} とおく。
|f(b)| ≦ K だから、 f(x) は [a, c] 内 の点 d で、 R 全体での最大値または最小値をとる。
ロルの定理の証明と同様の論法により、 f'(d) = 0 である。
以上より、↑の命題は成り立つことが分かった。

522:132人目の素数さん
18/05/29 19:14:43.42 ZeYVVUmu.net
f=0なら自明
f≠0なら平均値or閉区間とって最大(または最小)値の存在

523:132人目の素数さん
18/05/29 19:15:47.56 ZeYVVUmu.net
なんだよ松坂君かよ……

524:132人目の素数さん
18/05/29 19:19:42.40 f5vIlzv/.net
齋藤正彦さんの解答は以下です。
f(x) が恒等的に 0 ならあきらかだから、ある x0 で f(x0) > 0 とする。
極限の条件により、 a < x0 < b なる a, b で f(a) < (1/3)*f(x0), f(b) < (1/3)*f(x0)
となるものがある。中間値の定理により、 a と x0 のあいだの c で f(c) = (2/3)*f(x0)
となるものがあり、 x0 と b のあいだの d で f(d) = (2/3)*f(x0) となるものがある。
ロルの定理により、 c と d のあいだの e で f'(e) = 0 となるものがある。
>>504
の解答とどちらが良い解答でしょうか?

525:132人目の素数さん
18/05/29 19:22:09.18 k5/V1nu7.net
どっちが良いってなんだよ、長さか?

526:132人目の素数さん
18/05/29 19:30:10.34 f5vIlzv/.net
>>504
の解答から、
f が全実数で微分可能な関数で lim f(x) = 0 as x → ∞, lim f(x) = 0 as x → -∞

f(x) は最大値または最小値をもつ
ということも分かりますね。

527:132人目の素数さん
18/05/29 21:44:58.33 ZXXzNmmQ.net
f(x)が 恒等的に0でない場合を考え、f(c) = α > 0 とする。(α < 0 の場合も同様)
仮に 0 not∈ f ' (R) とする。連続関数の連結性保存により f ' (R) > 0 または f ' (R) < 0 である。
f ' (R) > 0 の時、f(x) = f(c) + ∫ [c, x] dt f ' (t) > α (x > c) より lim[x→ +∞]f(x) ≠ 0 である。
f ' (R) < 0 の時、f(x) = f(c) + ∫ [c, x] dt f ' (t) > α (x < c) より lim[x→ -∞] f(x) ≠ 0 である。
前提条件と矛盾するので、0 ∈ f ' (R) である。 つまり ある β に関して f ' (β) = 0 となる。

528:132人目の素数さん
18/05/30 06:08:04.46 7943hsjh.net
導関数が連続という条件はない

529:132人目の素数さん
18/05/30 06:55:48.55 0UloCQab.net
f(x) = x^2 sin(1/x) if x ≠0, f(0) = 0とすればすべてのxで微分可能で
f’(x) = 2x sin(1/x) - cos(1/x)、f’(0) = 0。
f’(1/(2nπ)) = -1よりn→∞において1/(2nπ)→0であるがf’(1/(2nπ)→f’(0)=0にならない。

530:132人目の素数さん
18/05/30 10:48:35.37 JPEhA3kc.net
> f が全実数で微分可能な関数で lim f(x) = 0 as x → ∞, lim f(x) = 0 as x → -∞ なら、
> f'(x) = 0 となる点 x が存在することを示せ。
f は単射であると仮定する。f は R 上で連続だから、f は狭義単調増加または狭義単調減少となることが
簡単に証明できる。どちらのケースでも、[ lim f(x) = 0 as x → ∞, lim f(x) = 0 as x → -∞ ] という
仮定に矛盾することが証明できる。
よって、f は単射ではない。よって、ある a<b に対して f(a)=f(b) である。
このとき、閉区間 [a,b] 上でロルの定理を使えば、f '(x)=0 なる x の存在性が出る。

531:132人目の素数さん
18/05/30 11:00:48.23 PPEAylJR.net
>証明できる
証明しろよ

532:132人目の素数さん
18/05/30 16:29:34.21 PMZrRFyz.net
数値解析的な話題です。

R の区間 I 上で定義された関数 φ(x) に対して、次の2つの条件を満たす閉区間 J ⊂ I
と定数 0 < λ < 1 の存在を仮定する:
φ(x) ∈ J (x ∈ J).
| φ(x) - φ(x')| ≦ λ*|x - x'| (x, x' ∈ J).
このとき、 φ(x) は J において唯一の不動点を持つ。


不動点反復法が、有限回の反復で解 a に到達することはあるだろうか?
φ(x) は定数関数でないとする。もし、 x_N = φ(x_N) が成り立つと仮定すると、
a = x_N = φ(x_(N-1)) と不動点の一意性により、 x_N = x_(N-1) がわかる。

と書いてあるのですが、これはなぜでしょうか?

533:132人目の素数さん
18/05/30 16:53:49.16 BU4I0cfT.net
>>515
んなもん成り立つはずない。
例えばJ=(-1,1)、λ* = 1/2として前程条件は
φ(x) = (x-2x^2)/10
とかで成立するけど初期値1/2とすれば1回目でいきなり不動点やん。

534:132人目の素数さん
18/05/30 16:54:28.12 7943hsjh.net
書いた奴が馬鹿だから。

535:132人目の素数さん
18/05/30 17:49:45.21 PMZrRFyz.net
>>516
ちょっと言っている意味が分からないのですが、
>>515
の続きを含めて引用します:

不動点反復法が、有限回の反復で解 a に到達することはあるだろうか?
φ(x) は定数関数でないとする。もし、 x_N = φ(x_N) が成り立つと仮定すると、
a = x_N = φ(x_(N-1)) と不動点の一意性により、 x_N = x_(N-1) がわかる。
これを続けて、 x_0 = x_1 = … = x_N = a を得る。すなわち、初期値 x_0 を x_0 = a
と選んだ場合のみこのようなことが起こる。


536:132人目の素数さん
18/05/30 17:59:43.32 PMZrRFyz.net
さらに以下の記述があります:

関数 φ(x) には、唯一の不動点 a = φ(a) が存在するとし、 φ(x) は
a の近傍で C^1 級であるとする。関数 φ(x) は定数関数ではないとする。
このとき、次が成り立つ。
(i) …
(ii) |φ'(a)| > 1 ならば、いかなる初期値 x_0 に対しても、反復法 x_(k+1) = φ(x_k)
は a に収束し得ない。

x_0 = a とすれば、明らかに {x_n} は a に収束するように思います。
あと、「閉区間 J のコーシー列 {x_n} には極限 a が存在し、 a ∈ J を満たす。これを
J は完備であると言う。」という内容が書いてあります。
閉集合内の点列が収束すると仮定すると極限もその閉集合に属するという命題のこと
ですが、完備などと言いますか?

537:132人目の素数さん
18/05/30 18:02:14.16 7943hsjh.net
書いた奴(515)が馬鹿だから。

538:132人目の素数さん
18/05/30 19:44:04.15 BU4I0cfT.net
>>519
酷い本やな。なんちゅう本?

539:132人目の素数さん
18/05/30 21:37:57.32 Wv6vXhQM.net
命題に関してはズタボロ
完備については間違ってはいない

540:132人目の素数さん
18/05/30 21:42:04.37 Wv6vXhQM.net
収束しないの命題に関しては、不動点以外からスタート、という仮定が含まれてるのかもしれん

541:132人目の素数さん
18/05/30 21:45:25.80 Zmm+qT5O.net
>>513, >>514
> f は単射であると仮定する。f は R 上で連続だから、
> f は狭義単調増加または狭義単調減少となることが
> 簡単に証明できる。
f は単射かつ、ある a, b ∈ R に関して a < b ∧ f(a) < f(b) とする。
任意の c ≠ a, b に対して f は 3点 {a, b, c}上で狭義単調増加である事が示せる。
・a < b < c の場合: 単射より f(b) ≠ f(c)。 f(b) > f(c) とすると、
  2区間 (a, b) , (b, c) において fの値 ( f(b) + max(f(a), f(c)) )/2 をとる点が存在する。 (中間値の定理)
 よって f(a) < f(b) < f(c)
・ c < a < b の場合, a < c < b の場合 も同様
つまり f が相異なる3点の内2点上で狭義単調増加なら3点上でもそうである。
任意の 2点 x, y (x < y) をとる。
上の3点 {a, b, c} に関して、x と一致しない2点(α, γとする)、その2点の中で y と一致しない1点(αとする) が必ず存在する。
よって 3点上での狭義単調増加性を保ったまま点の入れ変え {a, b, c} → {α, x, γ} → {α, x, y} が可能で、 f(x) < f(y) を得る。
x < y ⇒ f(x) < f(y) つまり f はR上で狭義単調増加である。

542:132人目の素数さん
18/05/30 21:48:31.76 PMZrRFyz.net
>>521
齊藤宜一著『数値解析』(共立出版)
という本です。
>>522-523
>>518
は間違っていますか?

543:132人目の素数さん
18/05/30 21:49:55.80 PMZrRFyz.net
名前が間違っていました。訂正します:
>>521
齊藤宣一著『数値解析』(共立出版)
という本です。
>>522-523
>>518
は間違っていますか?

544:132人目の素数さん
18/05/30 21:58:57.63 7943hsjh.net
>>523
それだって成り立たんが。

545:132人目の素数さん
18/05/30 22:01:56.37 7943hsjh.net
>>526
>>516の計算ぐらいしろ。

546:132人目の素数さん
18/05/30 22:05:01.02 PMZrRFyz.net
齊藤宣一著『数値解析』(共立出版)ですが、慣れないとちょっと読みにくいですね。

f(x) を区間 I で定義された C^1 級関数で方程式 f(x) = 0 には唯一の解 a ∈ I が
存在するとする。このとき、簡易ニュートン法(1.6)は、初期値 x_0 を a の近くからとり、
さらに f'(x_0) ≠ 0 である限り収束する。

簡易ニュートン法(1.6)とは、
x_(k+1) = x_k - f(x_k) / f'(x_0) (k = 0, 1, 2, …)
のことです。(分母が f'(x_0) で固定)

547:132人目の素数さん
18/05/30 22:07:59.15 PMZrRFyz.net
>>529
の証明ですが、ちょっと変わっています。

証明
φ(x) = x - f(x)/f'(x_0) とおくと、 φ'(x_0) = 0 であるから、 |φ'(a)| = |φ'(a) - φ'(x_0)|
となる。 f'(x_0) ≠ 0 である限り、 φ'(x) は a の近傍で連続なので、 x_0 を a の十分近く
にとれば、 |φ'(a)| はいくらでも小さくなる。


548:132人目の素数さん
18/05/30 22:10:19.29 PMZrRFyz.net
>>530
の証明では、↓の(i)が使われています。

関数 φ(x) には、唯一の不動点 a = φ(a) が存在するとし、 φ(x) は
a の近傍で C^1 級であるとする。関数 φ(x) は定数関数ではないとする。
このとき、次が成り立つ。
(i) |φ'(a)| < 1 ならば、 a の十分近くに初期値 x_0 をとると、反復法 x_(k+1) = φ(x_k)
は a に収束する。
(ii) |φ'(a)| > 1 ならば、いかなる初期値 x_0 に対しても、反復法 x_(k+1) = φ(x_k)
は a に収束し得ない。


549:132人目の素数さん
18/05/30 22:11:31.52 PMZrRFyz.net
日本語の数値解析の入門書っていい本がないですよね。
齊藤さんの本はましだと期待したんですが、この本はどうなんでしょうか?

550:132人目の素数さん
18/05/30 22:14:03.43 PMZrRFyz.net
>>530
x_0 を動かして φ(a) を評価するというのがちょっと変わっていると思いました。

551:132人目の素数さん
18/05/30 22:25:12.92 PMZrRFyz.net
>>515
>>516
あ、なるほど。
φ(1/2) = 0
φ(0) = 0
x_0 = 1/2
x_1 = 0
x_2 = 0
x_1 = φ(x_1)
x_1 = φ(x_0)
0 = x_1 ≠ x_0 = 1/2
ですね。

552:132人目の素数さん
18/05/30 22:36


553::10.43 ID:PMZrRFyz.net



554:132人目の素数さん
18/05/30 22:42:26.94 PMZrRFyz.net
>>527
うーん。いまその証明を見ていますが、どうも成り立つように思うのですが…

555:132人目の素数さん
18/05/30 22:44:42.44 PMZrRFyz.net
>>515
↓は、わざわざ注意1.3として書いていることです。恥ずかしすぎますね。

不動点反復法が、有限回の反復で解 a に到達することはあるだろうか?
φ(x) は定数関数でないとする。もし、 x_N = φ(x_N) が成り立つと仮定すると、
a = x_N = φ(x_(N-1)) と不動点の一意性により、 x_N = x_(N-1) がわかる。


556:132人目の素数さん
18/05/30 23:29:08.75 PMZrRFyz.net
>>530
↓「|φ'(a)| はいくらでも小さくなる」と書いてありますが、 a は固定された点です。
表現がおかしいですよね。こういうところも分かりにくいと感じさせる一つの要因かも
知れません。

証明
φ(x) = x - f(x)/f'(x_0) とおくと、 φ'(x_0) = 0 であるから、 |φ'(a)| = |φ'(a) - φ'(x_0)|
となる。 f'(x_0) ≠ 0 である限り、 φ'(x) は a の近傍で連続なので、 x_0 を a の十分近く
にとれば、 |φ'(a)| はいくらでも小さくなる。


557:132人目の素数さん
18/05/30 23:30:59.82 PMZrRFyz.net
あ、今思ったんですが、
要は、 φ'(a) = 0 ということですよね。

558:132人目の素数さん
18/05/30 23:46:10.72 sk1AqFXJ.net
ここは質問スレ

559:132人目の素数さん
18/05/31 00:13:19.19 OOLJCy1l.net
まぁ今回のはそもそも分かりやすい分かりにくい以前に間違ってる。
しかし、反例提示されても理解するのにエライ時間くってるし、
今は今で成立してない命題証明しようと頑張ってるし、そもそも自分の数学力が足りてないんじゃないの?

560:132人目の素数さん
18/05/31 09:52:23.90 3l5pYsM3.net
松坂君が馬鹿であることを再発見したね

561:132人目の素数さん
18/05/31 13:19:51.64 ZYMJbq7V.net
離散数学のいい参考書ない??
講義受けてるけど教授が何言ってるのか(声が小さくて)きこえないしわからない

562:132人目の素数さん
18/05/31 13:35:33.00 5Mqf5Lbb.net
>>543
前の席に座れば?

563:132人目の素数さん
18/05/31 13:43:00.01 NCmBy4cs.net
>>543
板名が読めるように日本語勉強したら

564:132人目の素数さん
18/05/31 14:06:54.83 ZYMJbq7V.net
>>545
わかんねえからわかりやすいの聞いてんだろアスペか?日本語学び直してきたら?
>>544
一番前ではないけど前から2,3番目に座ってるけど聞こえんのよね

565:132人目の素数さん
18/05/31 14:12:27.64 emeQPWA+.net
>>543
離散数学の本はタイトルは同じでも扱っている内容が大きく異なることが多いと思います。
その講義で扱われている内容はどんな内容なのでしょうか?

566:132人目の素数さん
18/05/31 14:14:02.10 Prz+Bbp1.net
>>546
情報板へ行けといってるんだだボケ

567:132人目の素数さん
18/05/31 14:24:26.01 ZYMJbq7V.net
>>548
そうかすまんかった

568:132人目の素数さん
18/05/31 14:32:00.69 ZYMJbq7V.net
>>547
離散集合 集合と対応 関数 同値関係 集合の分割 演算と代数 順序集合と束 様々な代数 ブール代数 ブール関数 周期関数とその表現 周期関数の級数展開 関数の変換とその応用
ぱっとシラバスからコピペしたらこんな感じでした

569:132人目の素数さん
18/05/31 14:33:16.06 emeQPWA+.net
離散数学を数学とはみないのは日本に特有のことみたいですね。

570:132人目の素数さん
18/05/31 14:50:38.92 +UsmReGr.net
全部網羅的な教科書は無さそう

571:132人目の素数さん
18/05/31 16:51:13.69 emeQPWA+.net
>>550
なんかよく分かりませんが、
>周期関数とその表現 周期関数の級数展開 関数の変換とその応用
↑これって離散数学なんですか?

572:132人目の素数さん
18/05/31 18:17:23.33 A5oJ+avV.net
フーリエ解析に分類されるよね普通
まあ応用数学一般として講義してるなら入れるかも

573:132人目の素数さん
18/05/31 18:43:26.54 YExPTj9n.net
離散フーリエなんだろよ

574:132人目の素数さん
18/05/31 21:58:46.16 Jirqm0H/.net
純粋数学寄りの離散数学だとほぼ組合せ論の話だしな
やや応用寄りでグラフ理論
離散フーリエとか差分スキームあたりは情報方面行った方がいいレベルの完全に応用

575:132人目の素数さん
18/05/31 22:13:21.82 emeQPWA+.net
>>518

不動点反復法が、有限回の反復で解 a に到達することはあるだろうか?
φ(x) は定数関数でないとする。もし、 x_N = φ(x_N) が成り立つと仮定すると、
a = x_N = φ(x_(N-1)) と不動点の一意性により、 x_N = x_(N-1) がわかる。
これを続けて、 x_0 = x_1 = … = x_N = a を得る。すなわち、初期値 x_0 を x_0 = a
と選んだ場合のみこのようなことが起こる。

↑この誤った注意ですが、後ろのほうにも影響が及んでいます↓。


定理1.13(ニュートン法の収束の速さ)
定理1.6と同じ仮定の下で、ニュートン法(1.5)の反復列は、 x_0 ≠ a のとき、
lim [x_(k+1) - a] / [(x_k - a)^2] as k → ∞ = (1/2) * f’’(a) / f’(a)
を満たす。

齊藤さんは、 x_0 ≠ a のとき、 x_k ≠ a だと思っているわけなので、
x_k = a となる場合があることを全く心配していません。
ひどい本です。

576:132人目の素数さん
18/06/01 00:17:57.30 LBA4dh6k.net
低速フーリエ

577:132人目の素数さん
18/06/01 13:27:35.41 sBmjNpTj.net
劣等感が追い出されて来たんか

578:132人目の素数さん
18/06/01 21:47:11.19 iK5L1rIw.net
ある関数y(x)、z(x)のロンスキー行列をD(y、z)とするとき、このD(y、z)が恒等的に0にならない場合にy(x)とz(x)が一次独立であることの証明を行え
また、次の組みの一次独立の判定を証明を含めて行え
(1)1、x、1+x
(2)1、cos2x、cos^2x
(3)1、sin2x、sin^2x
すいません、これをお願いします。
二つ目の問題の(1)はxに0を代入してa+c=0でa=-1、c=1でも成り立つので一次独立ではないといった感じで大丈夫ですか?

579:132人目の素数さん
18/06/01 22:10:25.53 iK5L1rIw.net
>>560
(3)はsin2xとsin^2xのみでした

580:132人目の素数さん
18/06/01 22:19:54.48 977NFEF3.net
>>560
その設問だとロンスキアンつかわなダメじゃね?

581:132人目の素数さん
18/06/01 22:25:00.14 iK5L1rIw.net
>>562
すいません1問目ですか?

582:132人目の素数さん
18/06/01 22:34:20.37 iK5L1rIw.net
2問目は抜けていましたが、一次独立の定義(ある関数y(x)、z(x)と定数a、bごあるときに、ay(x)+bz(x)=0がa=b=0の場合のみ恒等的に成立するとき関数y(x)、z(x)は一次独立)を利用して証明です

583:132人目の素数さん
18/06/01 23:18:33.64 977NFEF3.net
>>5630
勘違いしてたorz。
ロンスキアン使わなあかんのは一次独立であるを示すとき。
(1),(2)は一次従属だから好きなもん使って示せばいいと思う。

584:132人目の素数さん
18/06/02 11:08:28.70 NK2MAr72.net
>>560
>二つ目の問題の(1)はxに0を代入してa+c=0でa=-1、c=1でも成り立つので一次独立ではないといった感じで大丈夫ですか?
像が1次従属だからといって元も1次従属にはならんがや

585:132人目の素数さん
18/06/02 15:35:16.56 o9EnEJxC.net
>>566
すいません、どういう事でしょうか

586:132人目の素数さん
18/06/02 15:51:39.97 2oBOSXM3.net
y=x+定数の部分なんですが、なぜ定数になるのかがわかりません。任意関数ではないんですか?
URLリンク(i.imgur.com)

587:132人目の素数さん
18/06/02 16:22:01.20 2oBOSXM3.net
分野は偏微分方程式です

588:132人目の素数さん
18/06/02 19:40:46.94 K42WJEUT.net
>>566
代入するとは多項式から実数への線形写像だよ

589:132人目の素数さん
18/06/02 20:42:31.18 2TZQMZgd.net
それが何か関係あるのか。

590:132人目の素数さん
18/06/02 22:41:45.49 NK2MAr72.net
>>571
ん?
f1(x),...,fn(x)が一次独立か従属か決定するために
a1f1(x)+...+anfn(x)=0
と置いた上で
xに何か値たとえば0を入れて
a1f1(0)+...+anfn(0)=0
が成立する非自明なa1,...,anがあったとしても
それで
a1f1(x)+...+anfn(x)=0
が成立するとは限らないってことだよ

591:132人目の素数さん
18/06/03 00:43:47.95 yrB9kXha.net
>>570は関係ないが。

592:132人目の素数さん
18/06/03 19:54:01.50 kU0ozEMf.net
>>573
なんで?

593:132人目の素数さん
18/06/03 19:55:35.43 S/KX08qG.net
R^3 から R への関数を f(x, y, z) とします。 c を定数とします。
f(x, y, z) = c となるような R^3 の部分集合は一般に曲面になる
というのはどうしてですか? f にどんな条件が付くときに曲面に
なるのでしょうか?また曲面の定義自体が分かりません。

594:132人目の素数さん
18/06/03 19:57:09.96 kU0ozEMf.net
>>567
1と1+xだけで
a・1+c(1+x)=0
にx=0を代入して
a+c=0
になるからa=1,c=-1で成立するから1次従属?

595:132人目の素数さん
18/06/03 22:41:47.74 S/KX08qG.net
A を平面の点の空でない集合とし、 f(x, y) を A で定義された関数とする。
平面の点の集合 S に対し、最大値の定理の証明の中だけで使う記号
A ≦ S と A > S を定義する。 A の任意の点 (x, y) に対し、 S に含まれる
A の点 (s, t) で f(x, y) ≦ f(s, t) をみたすものが存在するとき、 A ≦ S と
書く。 A の点 (x, y) で、 S に含まれる A の任意の点 (s, t) に対し
f(x, y) > f(s, t) となるものが存在するとき、 A > S と書く。記号 A ≦ S と
A > S の意味は関数 f(x, y) によって決まるものだが、記号からは省略した。
A が S の部分集合ならば A ≦ S である。 A は空集合ではないから、
A と S が交わらないならば A > S である。 A ≦ S ならば f(x, y) の最大値を
とる A の点で S に含まれるものがあるはずであり、 A > S ならば f(x, y) の
A での最大値をとる点は S には含まれない。
(1)と(2)のどちらが A ≦ S の定義でしょうか?
(1)
A ≦ S

∀(x, y) ∈ A, ∃(s, t) ∈ A ∩ S such that f(x, y) ≦ f(s, t)
(2)
A ≦ S

∃(s, t) ∈ A ∩ S, ∀(x, y) ∈ A such that f(x, y) ≦ f(s, t)

596:132人目の素数さん
18/06/03 22:56:32.12 kU0ozEMf.net
>>575
R^2からR^3への連続像だよ

597:132人目の素数さん
18/06/03 23:47:02.52 S/KX08qG.net
>>577
(1)だと解釈すると、
「A が S の部分集合ならば A ≦ S である。」
は成り立ちますが、
「A ≦ S ならば f(x, y) の最大値をとる A の点で S に含まれるものがある。」
は成り立ちません。
(2)だと解釈すると
「A が S の部分集合ならば A ≦ S である。」
は成り立ちませんが、
「A ≦ S ならば f(x, y) の最大値をとる A の点で S に含まれるものがある。」
は成り立ちます。

598:132人目の素数さん
18/06/03 23:52:28.77 rumwxwOg.net
ほとんど自明のような気がするんですが、ちゃんと証明するとどうなるのかよくわからない問題です
K⊂M⊂Lを体の有限次拡大でNをKの代数閉包とするとき
1、任意のM→NのK準同型は、あるL→NのK準同型の制限として存在する
2、任意のL→NのK準同型は、あるM→NのK準同型の拡張として存在する
これってどうやって証明できますか?

599:132人目の素数さん
18/06/04 00:23:13.94 eLfureAF.net
>>580
なんぼなんでも(2)は当たり前でしょ?g:L→NにたいしてそのMへの制限をfとすればgはfの拡張です。
(1)は[L:M]についての帰納法。[L:M]=1なら自明。[L:M]<nで成立として[L:M]=nとする。f:M→Nをとる。
h:M(a)→Nを以下のように定める。
a∈L\Mをとってp(x)∈M[x]をaの最小多項式とする。
fをpの各係数にヒットして得られる多項式をq(x)∈N[x]とする。
b∈Nをq(x)=0の解とすればu(a) ∈ M[a]に対しh(u(a))を
h(u(a)) := u(b)
で定めればhがfのM(a)への拡張になる。
これを帰納法の仮定でLまで拡張すればよい。

600:132人目の素数さん
18/06/04 00:25:39.00 eLfureAF.net
>>581
ちょっと文章おかしい。orz

601:132人目の素数さん
18/06/04 00:27:01.72 Ew3FIvyX.net
>>581
無限次拡大でも成立するでしょ

602:132人目の素数さん
18/06/04 01:07:17.27 h+ZWgLJO.net
>>581
ありがとうございます。
確かに、2は本当に自明でした。
1はLをM(a1),M(a1,a2)と順々に生成元を増やしていくことで
証明可能ですね。

603:132人目の素数さん
18/06/04 01:08:30.80 eLfureAF.net
>>583
成立するけどそんなこと聞かれてないじゃん。

604:132人目の素数さん
18/06/04 01:40:11.94 TVLQ/Uff.net
>>575
f がどんな関数でもいいとすると、多分収拾がつかなくなる。
とりあえず f は微分可能としておくと、
・f(x,y,z)=c となるような R^3 の部分集合が空でない。
・各点で、∂f/∂x, ∂f/∂y, ∂f/∂z の少なくとも一つが 0 でない。
が成り立てば、普通にイメージする「曲面」になると思う。(陰関数定理より)
曲面の定義についてはいろいろとややこしい話があって、俺もよく分かってない
>>578
それだと例えば1点集合も含まれてしまう

605:132人目の素数さん
18/06/04 01:43:47.58 pRuLOyTB.net
曲面とは第二可算公理を満たす二次元の多様体とする。
ウィキペディアに書いてありました

606:132人目の素数さん
18/06/04 02:13:36.85 uPN1izK/.net
波の周波数のピークだけを求めたいときにフーリエ変換より軽いアルゴリズムってありますか?

607:132人目の素数さん
18/06/04 03:46:57.06 Ew3FIvyX.net
>>585
無限次元でも成立するということは
機能的にちょっとずつ示すということが本質にならないことを意味してる
それは楽なことではあるけれど本質をズバリ示す方法が別にあるはず

608:132人目の素数さん
18/06/04 04:13:15.19 Utc1nkXv.net
>>589
では本質的な証明をどうぞ。

609:132人目の素数さん
18/06/04 08:58:40.11 ycd3mYgI.net
>>576
そう言いたいんですが、ダメでしょうか

610:132人目の素数さん
18/06/04 09:21:54.35 TVLQ/Uff.net
>>587
その上の例のところに
>どんな形式的定義によってもこの多様さを包摂することはできないだろう。
と書いてある。
定義の所には
>以下では、曲面とは第二可算公理を満たす二次元の多様体とする。
のように「以下では」と断っているので、
これが唯一絶対の定義というわけではない。

611:132人目の素数さん
18/06/04 09:41:10.86 6HdYFqxb.net
>>592
よくわかってないのにどうしてわかるんですか?

612:132人目の素数さん
18/06/04 11:36:40.98 yB8KSbea.net
>>586
んじゃ
局所単射な連続像で

613:132人目の素数さん
18/06/04 13:44:25.21 qVhRS52G.net
>>593
主語と目的語を明記しろ

614:132人目の素数さん
18/06/04 19:47:25.28 SYEVbRdt.net
A を平面の点の空でない集合とし、 f(x, y) を A で定義された関数とする。
平面の点の集合 S に対し、最大値の定理の証明の中だけで使う記号
A ≦ S と A > S を定義する。 A の任意の点 (x, y) に対し、 S に含まれる
A の点 (s, t) で f(x, y) ≦ f(s, t) をみたすものが存在するとき、 A ≦ S と
書く。 A の点 (x, y) で、 S に含まれる A の任意の点 (s, t) に対し
f(x, y) > f(s, t) となるものが存在するとき、 A > S と書く。記号 A ≦ S と
A > S の意味は関数 f(x, y) によって決まるものだが、記号からは省略した。
A が S の部分集合ならば A ≦ S である。 A は空集合ではないから、
A と S が交わらないならば A > S である。 A ≦ S ならば f(x, y) の最大値を
とる A の点で S に含まれるものがあるはずであり、 A > S ならば f(x, y) の
A での最大値をとる点は S には含まれない。
(1)と(2)のどちらが A ≦ S の定義でしょうか?
(1)
A ≦ S

∀(x, y) ∈ A, ∃(s, t) ∈ A ∩ S such that f(x, y) ≦ f(s, t)
(2)
A ≦ S

∃(s, t) ∈ A ∩ S, ∀(x, y) ∈ A such that f(x, y) ≦ f(s, t)

(1)だと解釈すると、
「A が S の部分集合ならば A ≦ S である。」
は成り立ちますが、
「A ≦ S ならば f(x, y) の最大値をとる A の点で S に含まれるものがある。」
は成り立ちません。
(2)だと解釈すると
「A が S の部分集合ならば A ≦ S である。」
は成り立ちませんが、
「A ≦ S ならば f(x, y) の最大値をとる A の点で S に含まれるものがある。」
は成り立ちます。

615:132人目の素数さん
18/06/04 21:37:15.77 Ew3FIvyX.net
>>591
ん?1と1+xが1次従属だと思ってるの?

616:132人目の素数さん
18/06/04 22:06:06.63 SYEVbRdt.net
「A の任意の点 (x, y) に対し、 S に含まれる A の点 (s, t) で
f(x, y) ≦ f(s, t) をみたすものが存在する」の意味ですが、これ
を素直に解釈した(1)の意味らしいです。
「A ≦ S ならば f(x, y) の最大値をとる A の点で S に含まれるものがある。」
は本当に成り立ちますか?
(1)
A ≦ S

∀(x, y) ∈ A, ∃(s, t) ∈ A ∩ S such that f(x, y) ≦ f(s, t)
(2)
A ≦ S

∃(s, t) ∈ A ∩ S such that ∀(x, y) ∈ A, f(x, y) ≦ f(s, t)

617:132人目の素数さん
18/06/04 22:14:43.45 SYEVbRdt.net
>>598
正誤表を見てみてもこの件については書いてありませんでした。

618:132人目の素数さん
18/06/04 22:35:22.68 I5WBOZE8.net
>>596
前後の文脈も仮定もいまいちわからんがsの仮定の文章だけから判断するなら(1)でしかありえない
最大値云々のところは文脈がわからんから間違ってるともなんとも

619:132人目の素数さん
18/06/04 22:37:40.96 I5WBOZE8.net
ようするに抜き出し方が不十分なのでよくわからん
(2)はなさそうだろうということだけは言えるが

620:132人目の素数さん
18/06/04 22:38:56.60 3Nmx3S2A.net
>>598
A={ (x,0)|0<x<2 }
S={ (x,0)|0<x<1 }
f:A → R, f(x,y)=1/x
とすると、(1)は成り立つが、max f(A) は存在しない。
特に、f(x,y) の最大値をとる A の点で S に含まれるものはない。
ただし、max f(A) が存在するケースでは、f(x,y) の最大値をとる A の点で S に含まれるものが存在する。
文脈から推測するに、max f(A) が必ず存在するようなケースしか考えてないのでは?

621:132人目の素数さん
18/06/04 22:51:35.85 SYEVbRdt.net
>>601-602
ありがとうございます。
抜き出し方が不十分ということはないと思います。
最大値の定理の証明の前の準備のような文章なので、もしかしたら、
max f(A) が存在するケースを勝手に考えているという可能性はあり
ます。

622:132人目の素数さん
18/06/04 22:57:24.24 SYEVbRdt.net
>>596
この本の妙なところですが、まず平面の開集合 U の点 a での連続性を定義していて、
その後に、一般の平面の点の集合 A の点 a での連続性が定義されていたりします。
妙に神経質なんです。
A - B という集合の演算についても B が A の部分集合のときにしか定義していません。
(意図が分かりません。)

623:132人目の素数さん
18/06/04 23:03:49.86 SYEVbRdt.net
URLリンク(imgur.com)
URLリンク(imgur.com)
念のため該当箇所の周辺をアップロードします。

624:132人目の素数さん
18/06/04 23:50:56.98 m/g81t05.net
wara

625:132人目の素数さん
18/06/05 00:03:36.23 SY5SVVbZ.net
>>605
単なる記号の定義で、成り立ちますかもクソもない気がするのですが、何が問題なんですか?

626:132人目の素数さん
18/06/05 00:26:24.95 PbqFpKWz.net
>>607
何回同じ事やるんだ

627:132人目の素数さん
18/06/05 06:15:14.27 +ryOilXm.net
>>604
アンタに神経質言われてもな

628:132人目の素数さん
18/06/05 19:01:19.69 LjMi6mmc.net
>>597
1とxと1+xは一次従属じゃないんですか?

629:132人目の素数さん
18/06/05 19:51:08.19 y93ap0Jy.net
なんでxを付け加えたの?

630:132人目の素数さん
18/06/05 20:07:51.97 7Wnt1KgV.net
x"=-ω^2cosx , ω=√(g/l)を変形して
(x')^2-2ω^2cosx=2Eを表せ
Eは系のエネルギー
分かりません、教えてください

631:132人目の素数さん
18/06/05 22:23:22.73 y93ap0Jy.net
物理板へGO!

632:132人目の素数さん
18/06/05 22:56:14.31 gFLinEPr.net
数学としてみるなら、Eがエネルギーなのかなんなのかよくわかんないだろうけども
単に示すだけなあr、x'' = ... の式に、x'をかけていわゆるエネルギー積分してしまえば下の式になる。
Eは単なる積分定数としての扱いになるけど。

633:132人目の素数さん
18/06/05 22:59:57.23 PbqFpKWz.net
ならんよ

634:132人目の素数さん
18/06/05 23:02:52.35 SY5SVVbZ.net
わからないんですね

635:132人目の素数さん
18/06/05 23:13:37.90 PbqFpKWz.net
いつも607みたいにおかしなこと書いてるね

636:132人目の素数さん
18/06/05 23:14:12.98 LjMi6mmc.net
>>611
一応問題では1、x、1+xなので…

637:132人目の素数さん
18/06/05 23:20:03.45 gFLinEPr.net
>>614
よくみたら確かにならんわ
問題確認して物理板いけ>>612

638:132人目の素数さん
18/06/05 23:43:06.14 59iDZs7a.net
URLリンク(ja.wikipedia.org)

639:132人目の素数さん
18/06/06 01:26:43.90 I5g3t//e.net
>>618
1次従属の判定法が間違いだって言ってるんだがや

640:132人目の素数さん
18/06/06 01:39:39.98 Yt9GUMLT.net
>>621
すいません、どこが間違ってるのでしょうか…

641:132人目の素数さん
18/06/06 02:30:51.42 KlZGQ+Ub.net
>>621
味噌カスくせーw

642:132人目の素数さん
18/06/06 03:24:58.10 I5g3t//e.net
>>622
1と1+xでその判定法使えないって言ってるんだがや

643:132人目の素数さん
18/06/06 03:51:08.55 7StJ7dNK.net
>>622
必要条件を一つ出しただけで解き終わったと思ってる間抜けはよくいるから安心して

644:132人目の素数さん
18/06/06 05:05:07.27 f4z4TL4l.net
>>622
K:問題での係数体
多項式x,1+xの変数xはfixed
a,b,c∈Kが体K上一次独立⇔a+bx+c(1+x)=0⇔a+b=b+c=0⇔a=-b=c.
a=-b=c≠0、a+c=b+c=0のときもa+bx+c(1+x)=0.
∴a,b,cはK上一次従属

645:132人目の素数さん
18/06/06 05:08:02.06 f4z4TL4l.net
>>622
a=-b=c≠0はa=-b=c=0

646:132人目の素数さん
18/06/06 05:17:00.63 f4z4TL4l.net
>>622
a=-b=c=0⇔a+b=b+c=b
だから、
>>626の「a=-b=c≠0、a+c=b+c=0」はb=0(a=b=c=0)でいいや

647:132人目の素数さん
18/06/06 05:37:52.25 bCWsafiW.net
集合論に関する問題です。
R := 実数集合 (連続体濃度)
A := 有限長記号列で表現可能な全ての実数の集合 (可付番濃度)
α := 集合 R - A から選んだ1要素 (選択公理を仮定)
とします。
α を定義する記号列は有限長なので、α は A に含まれます。
しかし α は A - B の要素なので、 α は A に含まれません。(矛盾)
これは何が問題なのでしょうか?
Aがあれで定義できているのか怪しい気がするのですが、
公理的集合論の立


648:黷ゥら具体的に指摘してもらえると助かります。



649:132人目の素数さん
18/06/06 05:40:13.94 f4z4TL4l.net
>>622
失礼、>>627-628は取り消し。
>>626でいい。

650:132人目の素数さん
18/06/06 05:46:28.26 TUSGQldc.net
>a+bx+c(1+x)=0⇔a+b=b+c=0
?

651:132人目の素数さん
18/06/06 05:54:37.91 f4z4TL4l.net
>>622
本当に失礼。>>626
>a+bx+c(1+x)=0⇔a+b=b+c=0⇔a=-b=c

>a+bx+c(1+x)=0⇔a+c=b+c=0⇔a=b=-c
「a=-b=c≠0、a+c=b+c=0」は「a=b=-c≠0、a+c=b+c=0」

652:132人目の素数さん
18/06/06 05:57:28.05 1HbeHY1T.net
>629
その定義では値が一意に定まらないから

653:132人目の素数さん
18/06/06 07:20:47.10 bCWsafiW.net
>>633
αの値の定義ですか?
選択関数( 選択公理下で存在が保証されている )を適当に固定して ”sel” とでもしておきます。
α := sel( R - A )
これで一意に定まると言えるはずですが、矛盾は解消されません。
後付けですが A の定義について補足します。
有限長記号列で表現可能な実数とは
 現行のUnicode記号(有限種類)を有限個並べて数学的に意味をなし ”一意に定まる” 実数
という事にします。 なので A が可付番濃度なのは明らか。(Aが定義できているのなら...)
また π, e , lim, Σ, ∫ , sin, cos 等の特定記号列は通常の意味を持つものとします。
◯例. lim[ξ→e] ∫[0, ξ] sin(t^π) dt
×例. m9(^Д^) (数学的に意味をなさない)
×例. 方程式 x^2 - 2 = 0 の解 (一意に定まらない)

654:132人目の素数さん
18/06/06 07:36:35.15 I5g3t//e.net
>>634
定義可能が定義されないからだよ

655:132人目の素数さん
18/06/06 07:36:55.06 I5g3t//e.net
>>634
>数学的に意味をなし ”一意に定まる”
ここがね

656:132人目の素数さん
18/06/06 09:04:08.77 DqPZ42vc.net
>>633
>>635
>>636
↑これが数学板の実力です
専門板なのに異常にレベルが低い
せいぜい数学の少しできる高校生レベル
>>629
>A := 有限長記号列で表現可能な全ての実数の集合 (可付番濃度)
は集合ではありません
このような命題は、対象内の言語で表現不可能で、メタ視点から俯瞰していることに相当しているからです

657:132人目の素数さん
18/06/06 09:12:24.22 G6+C1kaY.net
こういうパラドックスての本質てのは自己言及なわけです
自分のことは自分ではわからない、ということですね

658:132人目の素数さん
18/06/06 09:24:53.83 c66ueKgy.net
集合とは何か定義し、集合ではないことを示せますか?

659:132人目の素数さん
18/06/06 09:39:45.09 G6+C1kaY.net
集合とは、特定の構成方法(ZFC)によって構成されるクラスであって、その方法ではAは構成できません

660:132人目の素数さん
18/06/06 09:52:13.82 I5g3t//e.net
>>637
>このような命題は、対象内の言語で表現不可能で、メタ視点から俯瞰していることに相当しているからです
そういうことだよ
よく知ってんじゃんw

661:132人目の素数さん
18/06/06 10:17:20.58 hEC4hMnU.net
素直にわかりませんでした、と認めたらどうですか?恥ずかしいですね

662:132人目の素数さん
18/06/06 10:25:44.26 bCWsafiW.net
>>635, >>637, >>640
ありがとうございます。
言わんとする事の雰囲気は分かるのですが、自分はちゃんと理解する域に達していないようです。
こういうのってどういう本読めばいいんでしょうかね。

663:132人目の素数さん
18/06/06 10:27:19.71 hEC4hMnU.net
まずは数理論理学から勉強しましょう

664:132人目の素数さん
18/06/06 10:29:52.17 c66ueKgy.net
>>640
具体的に定義し、具体的に示せますか?

665:132人目の素数さん
18/06/06 10:30:23.54 hEC4hMnU.net
定義はウィキペディアに載ってますね
それを見ると明らかですね

666:132人目の素数さん
18/06/06 10:32:34.43 f4z4TL4l.net
>>622
K:問題での係数体、多項式x,1+xの変数xはfixed
多項式1,x,1+xが体K上一次独立とすると、
{1,x,1+x}はK-係数の多項式環K[x]の基底となり、a,b,c∈Kについて
a+bx+c(1+x)=0⇔a+c=b+c=0⇔a=b=-cなので、a=b=c=0となるが、
c≠0、a+c=b+c=0のときa,b≠0でa+bx+c(1+x)=0は成立して定義に反し矛盾
∴1,x,1+x∈K[x]はK上一次従属

667:132人目の素数さん
18/06/06 10:33:05.47 c66ueKgy.net
>>646
具体的にお願いします

668:132人目の素数さん
18/06/06 10:52:49.30 f4z4TL4l.net
>>622
>>626はなし

669:132人目の素数さん
18/06/06 11:05:14.66 hEC4hMnU.net
(1)+(x)=1+xだから独立ですよ
他の和で表せちゃったんですから

670:132人目の素数さん
18/06/06 11:09:11.05 JT1XOW9i.net
独立?

671:132人目の素数さん
18/06/06 11:09:13.16 hEC4hMnU.net
独立ではない、でした

672:132人目の素数さん
18/06/06 11:14:46.94 TXSYPVvY.net
ヘッシアンが0の時に極値を取ることはどうやって証明するんですか?

673:132人目の素数さん
18/06/06 11:17:54.89 7Q80lhuW.net
さあ

674:132人目の素数さん
18/06/06 13:03:59.85 p1acT6fD.net
ヘッシアン0が極値のわけねーだろ

675:132人目の素数さん
18/06/06 13:15:33.70 H9b9DLSi.net
ヘッシアンが0であれば極値をもつかどうかは分からない
そして実際に極値をもつかどうか判別する方法は問題ごとに違う
なので、具体的な問題を提示してくれないと答えられない

676:132人目の素数さん
18/06/06 13:34:48.89 TXSYPVvY.net
今まで見たのはヘッシアン0で極値を取らないことを示す問題ばかりでした
関数によっては極値を取るものもあると思うのですが、それを証明する方法はあるのでしょうか

677:132人目の素数さん
18/06/06 14:06:17.14 42MpZsQ1.net
>>647
>多項式1,x,1+xが体K上一次独立とすると、
>{1,x,1+x}はK-係数の多項式環K[x]の基底となり、
ここ詳しく説明してね

678:132人目の素数さん
18/06/06 14:31:31.54 H9b9DLSi.net
>>657
例えばf(x,y)=x^2+y^4上で(x,y)=(0,0)のヘッシアンは0になる
点(0,0)の近傍(x,y)を任意にとればf(x,y)>0を満たすので(0,0)で極小値0をとる

679:132人目の素数さん
18/06/06 16:32:29.66 Q1+o1co8.net
二次元分布わかる方教えてください
問題は2枚目と4枚目です
2枚目はできましたが4枚目がわかりません
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

680:132人目の素数さん
18/06/06 16:35:25.70 bfuKxOwI.net
わからないんですね

681:132人目の素数さん
18/06/06 16:52:10.03 khFraanj.net
計算問題かよ

682:132人目の素数さん
18/06/06 17:37:38.04 TXSYPVvY.net
>>659
ありがとうございます

683:132人目の素数さん
18/06/06 17:44:44.63 f4z4TL4l.net
>>658
Fを環とする。環F上に定義された二項演算としての加法、乗法をそれぞれ+、・とする。1をFの単元とする。
Gを任意の可換群とする。可換群はその上に定義された加法の二項演算について可換と見なして考えることが多い。
そこで、+と区別するため、群G上に定義された二項演算を +' で表すことにする。0をGの単位元とする。
すると、Fの加法群Gへの、Gの加法 +' に関する左からの作用 F×G→G (a,f)→a+'f が定まる。
同様に、FのGへの、Gの加法 +' に関する右からの作用 G×F→G (f,a)→f+'a も定まる。
Fの加法群Gへの、Fの乗法・に関する左からの作用 F×G→G (a,f)→a・f=af も定まるから、加法群Gは環Fの左F-加群。
同様に、FのGへの、Fの乗法・に関する右からの作用 G×F→G (f,a)→f・a=fa も定まるから、GはFのF-右加群。
よって、加法群Gは環FのF-両側加群。Gは任意なので、G=F として、
Gに定義された加法の二項演算 +' とFに定義された加法の二項演算+とを同じ二項演算の加法と見なせば、環FはFのF-両側加群となる。
単位的環はその上に定義された加法と乗法の二項演算について環なので、単位的環Fの加法の二項演算を+、乗法の二項演算を・とすれば、
Fは加法の二項演算+、乗法の二項演算・について、F上のF-両側加群となる。
Fの乗法の二項演算・が可換のときは、単位的環Fは可換環となって、同様に可換環Fは、
Fに定められた加法の二項演算+、乗法の二項演算・について、FのF-両側加群となる。
多項式環の定義から、可換環の点を係数とする多項式全体の空間F[x]は可換環をなし、
多項式環F[x]のF-係数多項式の変数xは固定されている。
このとき、もしF-係数多項式1,x,1+xが可換環F上一次独立ならば、{1,x,1+x}はF-係数の多項式環F[x]の基底となる。
体Kはその上に定義された加法と乗法の各二項演算が、環Fに定義された加法と乗法の各二項演算+、・のときは、環Fと見なせるので、
上の議論でのF上をF=Kとすれば、多項式1,x,1+xが体K上一次独立とすると、
1,x,1+x{∈K[x]で、1,x,1+x}はK-係数の多項式環K[x]の基底となることがいえる。


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

1849日前に更新/269 KB
担当:undef