面白い問題おしえて〜な 26問目
at MATH
267:132人目の素数さん
18/04/17 12:50:17.86 KM09+lmI.net
>>248
正の整数mが n≧m+1 を満たす時、
(1/n)Σ[k=1,n]{n/k}
=(1/n)Σ[t=1,m]Σ[k: t≦n/k<t+1](n/k-t) + (1/n)Σ[k: 1≦k≦n/(m+1)]{k/n}
=(1/n)Σ[t=1,m](∫[n/(t+1),n/t](n/x-t + (n/[x]-n/x)dx +O(1)) + O(1/m) (O(1)は積分区間の端点のズレ補正。すなわち絶対値は一様に2以下)
=log(m+1) - Σ[t=1,m]1/(t+1) +O(m)+O(n/m).
mは任意であったから、m=[√n] (n≧2) 等と定めればこの式のn→∞での極限は 1-γ. (ただしγはオイラーの定数)
次ページ続きを表示1を表示最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
22日前に更新/414 KB
担当:undef