面白い問題おしえて〜 ..
[2ch|▼Menu]
399:132人目の素数さん
15/09/10 15:04:56.68 fUpTwTtH.net
>>377
ちなみに、すぐ分かるとは思うのだが、論理の飛躍があるから、>>388
>初期条件a(1)=1から
>a(n+1)=(a(n)/2)+(1/a(n)) と解釈すると、任意のn≧1なる自然数nに対してa(n)≧1
>であり、
の部分は
>初期条件a(1)=1から a(n+1)=(a(n)/2)+(1/a(n)) と解釈すると、任意のn≧1なる
>自然数nに対してa(n)>0 。ここで、n≧2なる自然数nを任意に取ると、a(n)>0だから、
>相加・相乗平均の関係により、a(n+1)=(a(n)/2)+(1/a(n))≧2√(1/2)=√2 。
>n≧2なる自然数nは任意だから、nを条件n≧2の下で走らせると、任意のn≧2なる
>自然数nに対してa(n)≧√2 。よって、a(1)=1<√2 から、任意のn≧1なる自然数nに対して
>a(n)≧1 であり、
のような感じに訂正。さすがに任意のn≧1なる自然数nに対してa(n)>0なることは、
直観的にも明らかで、nに関する帰納法からすぐ分かるとは思う。

400:132人目の素数さん
15/09/10 15:16:34.87 fUpTwTtH.net
>>377
幾度も悪いが、>>389は取り消しで、>>388
>同様に、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、
>任意のn≧1なる自然数nに対してa(n)≧1であり、解(n)により1つの実数列{a(n)}が構成される。
>よって、与えられた条件を満たすような、解の一意性が保証された解a(n)について、
>任意のn≧1なる自然数nに対してa(n)≧1であり、解(n)により1つの実数列{a(n)}が構成される。
の部分は
>同様に、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、
>任意のn≧1なる自然数nに対して「a(n)>0」であり、解(n)により1つの実数列{a(n)}が構成される。
>よって、与えられた条件を満たすような、解の一意性が保証された解a(n)について、
>任意のn≧1なる自然数nに対して「a(n)>0」であり、解(n)により1つの実数列{a(n)}が構成される。
でした。「a(n)≧1」の部分を「a(n)>0」に訂正すべきだったにもかかわらず、「a(n)≧0」と書いてしまいました。
こういう風に解釈しても、任意のn≧1なる自然数nに対してa(n)>0なることは、
直観的にも明らかで、nに関する帰納法からすぐ分かるとは思う。

401:132人目の素数さん
15/09/10 16:06:11.07 fUpTwTtH.net
>>377
>>388
>n≧1なる自然数nを任意に取る。実数列{a(n)}の第n項a(n)を=kとおけば、a(n+1)=(k/2)+(1/k)、
>a(n+1)=k/(2+1/k) が両方共に成り立つから、(k/2)+(1/k)=k/(2+1/k) から k^2+2=(2k^2)/(2+1/k)
>であり、(k^2+2)(2+1/k)=2k^2 だから、(k^2+2)(2k+1)=2k^2 。従って、kを元に戻すと、
>((a(n))^2+2)(2・a(n)+1)=2(a(n))^2 。n≧1なる自然数nは任意だから、nを条件n≧1の下で走らせれば、
>実数列{a(n)}について、任意のn≧1なる自然数nに対して第n項a(n)は ((a(n))^2+2)(2・a(n)+1)=2(a(n))^2 を満たす。
>よって、n=1とすると、((a(1))^2+2)(2・a(1)+1)=2(a(1))^2 であり、初期条件a(1)=1から、(1^2+2)(2・1+1)=2・1^2
>だから、両辺をそれぞれ計算すると、9=2を得る。しかし、9=2は9≠2に反し矛盾する。
の部分は
>n≧1なる自然数nを任意に取る。実数列{a(n)}の第n項a(n)を=kとおけば、a(n+1)=(k/2)+(1/k)、
>a(n+1)=k/(2+1/k) が両方共に成り立つから、(k/2)+(1/k)=k/(2+1/k) から k^2+2=(2k^2)/(2+1/k)
>であり、(k^2+2)(2+1/k)=2k^2 だから、(k^2+2)(2k+1)=2k^3 。従って、kを元に戻すと、
>((a(n))^2+2)(2・a(n)+1)=2(a(n))^3 。n≧1なる自然数nは任意だから、nを条件n≧1の下で走らせれば、
>実数列{a(n)}について、任意のn≧1なる自然数nに対して第n項a(n)は ((a(n))^2+2)(2・a(n)+1)=2(a(n))^3 を満たす。
>よって、n=1とすると、((a(1))^2+2)(2・a(1)+1)=2(a(1))^3 であり、初期条件a(1)=1から、(1^2+2)(2・1+1)=2・1^3
>だから、両辺をそれぞれ計算すると、9=2を得る。しかし、9=2は9≠2に反し矛盾する。
と訂正ですな。

402:132人目の素数さん
15/09/10 16:20:37.27 UqiYOrwz.net
(1) Σ[k=1 to 4^m] (1/k)^{1/m}、mは2以上の自然数
(2) m(4^{m-1}-1)/(m-1) + 5/8
(1)と(2)の整数部分は等しいことを示せ。

403:132人目の素数さん
15/09/10 21:48:53.01 fwhHKoME.net
なんか変な荒れ方してるが、まあどうでもいい
>>383
b(n)とc(n)の決め方が、3次方程式を解くカルダノの方法のuとvの探し方みたいですな。
2√2-3 = (1+√2)^(-2)だから、>>382は汚いけど答えは一致したってことで。

404:132人目の素数さん
15/09/10 22:19:31.06 fwhHKoME.net
あ、違う。(1+√2)^(-2) = 3-2√2だな。あれ?
ああそうか、だから>>383ではa(1)をまとめられなかったのか。

405:132人目の素数さん
15/09/10 22:24:24.58 Fdi5OLRB.net
>>377
蛇足だと思うが、一言
漸化式を見ると、右辺の非対称性が気になる。そこで全体を√2で割りたくなるが、すると
a_{n+1}/√2=(1/2){(a_n/√2)+(√2/a_n)}
と、数列a_{n}/√2は、「そのものと、そのものの逆数の平均」が次の項となるような数列にすることができる
このようなある種の平均が次の項になるという漸化式を、三角関数の加法定理を利用して解いた経験から、
その辺にヒントがあるだろうと、公式集を見てみると、coth(x)が将にそれにあたる
つまり、a_{n}/√2 〜 (e^x+e^(-x))/(e^x-e^(-x)) 〜 (X+1)/(X-1)
実際 (X+1)/(X-1) は、逆数と和を取って半分にすると言う変換を行うと
(1/2){(X+1)/(X-1) + (X-1)/(X+1)} = (X^2+1)/(X^2-1)
と指数部分が二倍になるという、形の変化に対応することが確認でき、外形が定まる。
a_{n}/√2 = (X^(2^n)+1)/(X^(2^n)-1)
後は、定数を定めれば良い。定数と言っても、ここでは、X=e^(2cx)としているので、Xそのもの
1/√2 = (X+1)/(X-1)を解いて、X=-3-2√2。整理すると
a_{n}=(X^Y+1)/(X^Y-1),X=-3-2√2,Y=2^(n-1)
あるいは、虚数単位Iを使い
a_{n}=(X^Y+1)/(X^Y-1),X=I(1+√2),Y=2^n
結局、これは、ニュートン法のはなしだね。決してバケモノクラスの問題では無い。

406:132人目の素数さん
15/09/10 22:27:42.42 Fdi5OLRB.net
あ、ミスった
>> a_{n}=√2(X^Y+1)/(X^Y-1),X=-3-2√2,Y=2^(n-1)
>> あるいは、虚数単位Iを使い
>> a_{n}=√2(X^Y+1)/(X^Y-1),X=I(1+√2),Y=2^n
に訂正

407:132人目の素数さん
15/09/11 02:26:59.14 StCc9XNv.net
tan1°+√2は無理数であることを証明せよ

408:132人目の素数さん
15/09/11 07:37:43.35 jICTOxiG.net
>>395-398
nはn≧1なる自然数変数なることを仮定してよい。そこで、nはn≧1なる自然数変数と仮定する。
a(1)=1、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、任意のn≧1なる自然数nに対してa(n)>0 。
n≧1なる自然数nを任意に取る。すると、a(n)>0 であり、a(n+1)=a(n)/(2+1/a(n))>0 だから、
1/(a(n+1))=(2+1/a(n))/(a(n))=(2/a(n))+(1/a(n))^2 。よって、各i=n, n+1 に対して b(i)=1/a(i) とおけば、
b(n)=1/a(n)、b(n+1)=1/a(n+1) が両方共に成り立ち、b(n+1)=2・b(n)+(b(n))^2 つまり b(n+1)=(b(n))^2+2・b(n) 。
n≧1なる自然数nは任意だから、nを条件n≧1の下で走らせると、与えられた問題は b(1)=1、b(n+1)=(b(n))^2+2・b(n)
を満たし、任意のn≧1なる自然数nに対して b(n)=1/a(n) と変換して定義される実数列{b(n)}を求める問題に帰着される。
そこで、b(1)=1、b(n+1)=(b(n))^2+2・b(n) のときの解b(n)を求めることを考える。…… 。
仮に a(1)=1、a(n+1)=a(n)/(2+1/a(n)) だったと解釈すると、非線形の漸化式 b(1)=1、b(n+1)=(b(n))^2+2・b(n)
の解b(n)を求める問題に帰着されるんだが、ここから先分かる? >>377のいう
>Wolframとか使わずに初見で解いたらバケモノ
って、多分こっちの話だぞ。連分数の形で書かれた式 a(1)=1、a(n+1)=a(n)/(2+1/a(n))
で書いたと解釈すると、線型の漸化式ではなく、非線形の漸化式を解く問題になる。

409:132人目の素数さん
15/09/11 08:03:25.27 jICTOxiG.net
>>395-398
あ〜、この場合は条件式 b(n+1)=(b(n))^2+2・b(n) の両辺に1を足して
b(n+1)+1=(b(n))^2+2・b(n)+1=(b(n)+1)^2 になる。
また、n=1 のときは、b(1)=1 なので、b(1)+1=2。なので、
任意のn≧1なる自然数nに対して c(n)=b(n)+1 と変換すると
c(1)=2、c(n+1)=(c(n))^2 の解c(n)を求める問題に容易に帰着出来て、
この解c(n)はすぐ求まるのか。なので、解b(n)も容易に求まり、
従って、元々の解a(n)もすぐ求まるという仕組みというか方針か。
なるほど。これは失礼を致した。大抵、非線形の問題を解くことは難しいんだけど。

410:132人目の素数さん
15/09/11 09:05:02.17 V6ntLYDb.net
既出だったらすまんが
(無理数)^(無理数)が有理数になりえることを、初等的な例を挙げて示せ。

411:132人目の素数さん
15/09/11 09:26:41.76 AfBlc+HR.net
>>399
tan1°は代数的無理数で、tan1°を根とする既約多項式があり、次数はいくつだか分からないが、
少なくとも5次以上であることを、証明なしに使うこととする。
√2は、G(x)=x^2-2の根
tan1°+√2が有理数だと仮定すると、ある整数pとqを使って表せるH(x)=px+qの根となる
G(x)をH(x)で割った商を ax+b 、余りを c(cは有理数


412:jとすると G(x)=(ax+b)H(x) + c、と書ける。 G(tan1°+√2)=(tan1°+√2)^2-2=(a(tan1°+√2)+b)H(tan1°+√2)+c=c となるが、変形すると、 tan1°=-√2±√(c+2) 右辺は、せいぜい4次の多項式の根であり、tan1°が5次以上の既約多項式の根であることと矛盾する



413:132人目の素数さん
15/09/11 09:32:27.32 fRi0Wl2l.net
>>402
(2^√2)^√2 とかかな

414:132人目の素数さん
15/09/11 09:36:03.42 tWZwSoqi.net
>>402
ここで既出かどうかは知らないが、
世間的に有名なやつだ。
(√3)^√2が有理数なら、それが実例になり、
無理数なら、((√3)^√2)^√2=3が実例になる。
どっちなのかは、判らん。

415:132人目の素数さん
15/09/11 09:37:42.70 jICTOxiG.net
初等的がどういう意味かは知らないが、e^{log(5)}=5 だな。
確かにeは無理数で、log(5)は超越数だから、無理数になる。5は確かに有理数。
eもlog(5)も高校で出て来るから、初等的になるでしょう。

416:132人目の素数さん
15/09/11 10:37:21.00 ZFHN8CXT.net
当然「初等的な範囲で証明できる例」という意味で>>405みたいなのを
想定してるんでしょうな。
(排中律を使った証明を嫌がる人が沸いてくる面倒な案件ではあるw)

417:132人目の素数さん
15/09/11 11:14:02.69 /suPxUqm.net
結構有名なのか
この証明法を知ったときは目から鱗だった
log(2)の無理性を示す方針も可

解答例
√2は無理数である
さて、a=(√2)^(√2)とすると
aは実数であるから
aは有理数、無理数のいずれかであるが
i) aを有理数と仮定すると
a自体が(無理数)^(無理数)=(有理数)の例である
ii) aを無理数と仮定すると
a^(√2)=2であり、これは(無理数)^(無理数)=(有理数)の例である
i)、ii)より、(無理数)^(無理数)が有理数になりえることが示された

418:132人目の素数さん
15/09/11 11:21:30.73 /suPxUqm.net
あ、俺は402ね

419:132人目の素数さん
15/09/11 12:32:47.97 FOBod9Ir.net
>>403
正解かな いちおうtan1°が5次以上ってのも示して欲しいけど
あとtan1°+√2=p (pは有理数)とすると
(tan1°)^2-2ptan1°+p^2-2=0と変形出来るから3次以上ってことさえ証明すれば十分

420:132人目の素数さん
15/09/11 13:51:57.87 y87/SChC.net
>>402
(√2)^(2log[2](3))=3
これなら無理数性の証明まで十分高校レベル

421:132人目の素数さん
15/09/11 15:03:07.40 26HmIQf3.net
xが無理数のときx^xが有理数となり得るか?

422:132人目の素数さん
15/09/11 15:28:54.94 FOBod9Ir.net
>>410のヒントは倍角の公式使ってcosに帰着させる
あとは>>364の応用だけ

423:132人目の素数さん
15/09/11 15:36:02.35 FOBod9Ir.net
倍角というより半角の公式か

424:132人目の素数さん
15/09/11 22:12:41.62 tWZwSoqi.net
>>411
log[2](3)が無理数であることは、
eが超越数であることから導かれる。
eの超越性は、超高校級かなと思う。

425:132人目の素数さん
15/09/11 22:19:01.24 JDCgBl3X.net
>>415
log[2](3)=p/q (p,qは整数 q≠0)とすると
3^q=2^p
素因数分解の一意性から矛盾
どこにeの超越性を使ってるんだ?ん?

426:132人目の素数さん
15/09/11 22:25:35.73 JDCgBl3X.net
ちなみに>>405はゲルフォント・シュナイダーの定理から(√3)^(√2)=3^(√(2)/2)は無理数

427:132人目の素数さん
15/09/11 23:03:39.94 tWZwSoqi.net
>>416
ああ、そうか。
e^{log(5)}のとき思っていたことを
つい書いてしまったが、
君のは、底が2だった。
すまんかったな。

428:132人目の素数さん
15/09/12 16:53:16.38 XRx2A6+T.net
>>412
x^x=2 となる実数 x が存在する。
(関数 f(x)=x^x は 区間 [1,2] で連続、f(1)=1, f(2)=4 と中間値の定理から)
その x が有理数 p/q (p,q は自然数で互いに素) であると仮定すると、
(p/q)^(p/q)=2
p^p=2^q*q^p (*)
p≠1 のとき
(*)の左辺は p 乗数だが右辺は p 乗数でないので矛盾。
p=1 のとき
(*)の左辺は 1、右辺は 2 以上なので矛盾。
したがって、この x は無理数。
∴ x が無理数のとき x^x は有理数となり得る。

429:132人目の素数さん
15/09/14 03:29:58.20 kfYtajnS.net
半円をいくつかの合同な図形に分割せよ
ただし扇形は用いてはいけない

430:132人目の素数さん
15/09/14 09:35:08.29 O6d93CqM.net
中心点対称なギザギザかグニャグニャで
放射状に分割すればいい。
扇形ではない。って、トンチかい!

431:132人目の素数さん
15/09/14 10:46:09.32 qG0LsQ64.net
>>421
少しでもギザやぐにゃあれば合同にならない気がするけど

432:132人目の素数さん
15/09/14 10:51:30.03 dnSa0BIn.net
無限個の三角形に分割

433:132人目の素数さん
15/09/14 12:00:35.58 OT7kPGqS.net
そもそも出来るの?

434:132人目の素数さん
15/09/14 12:43:05.62 GHCoaB5O.net
扇形に面積0の切れ目でも入れとけ
それとも4つの扇形にして扇形2つを1図形とするか

435:132人目の素数さん
15/09/14 13:07:38.24 eiNVFbFa.net
「円」じゃなくて「半円」だよね?
半円を合同な図形に分割するんだよね?
難しくね?

436:132人目の素数さん
15/09/14 18:02:17.18 hCCSNFoO.net
扇型の一部を切り抜いて、飛び地を持つ図形にすればいい

437:132人目の素数さん
15/09/14 18:09:26.69 72x0Si/g.net
>>427
飛び地と本体との間隔がそれぞれ違くならない?

438:132人目の素数さん
15/09/14 18:11:27.48 72x0Si/g.net
あぁ二つに

439:132人目の素数さん
15/09/14 18:12:03.03 72x0Si/g.net
すればいいだけか

440:132人目の素数さん
15/09/14 18:31:29.17 N6lFSlFA.net
裏返しになるから合同じゃなくね?

441:132人目の素数さん
15/09/14 18:34:32.94 Yv3jNlqx.net
えっ

442:132人目の素数さん
15/09/14 19:58:31.91 O6d93CqM.net
>>426
ああ、半円か!
バナッハタルスキ使う?

443:132人目の素数さん
15/09/14 22:12:07.21 W7Wo0lmA.net
合同じゃなくて相似なら(そして境界線が健全な曲線でなくていいなら)
なんとでもやりようがあるのだが

444:132人目の素数さん
15/09/14 22:24:43.97 KixLyrfi.net
有限個に分割とは書いてないので、半円状の各点について一点集合を考えれば…

445:132人目の素数さん
15/09/14 22:49:53.17 /BVJmROY.net
いくつかの合同な図形=何種類かの合同な図形の組だったりしないよな

446:132人目の素数さん
15/09/15 12:02:42.56 zynqzyx5.net
簡単かもしれんが…。
(1) 多項式 f(x) に対して、f(f(x))-x は f(x)-x で割り切れることを示せ。
(2) f(x) が分数式や無理式の場合はどうか?

447:132人目の素数さん
15/09/15 12:15:35.76 GA6S6TvJ.net
>>437
スレリンク(prog板:58-59番)

448:132人目の素数さん
15/09/15 15:51:40.50 eoTYkqja.net
>>437
f(x)=f(a)+(x-a)f'(a)+(1/2)(x-a)^2f''(a)+(1/6)(x-a)^3f'''(a)+...
これは、f(x)をx=aの周りでテイラー展開したものだが、任意のfに対する、aとxの恒等式とも言える。
a=f(x)を代入すると
f(x)=f(f(x))+(x-f(x))f'(f(x))+(1/2)(x-f(x))^2f''(f(x))+(1/6)(x-f(x))^3f'''(f(x))+...
f(f(x))-x=(f(x)-x){1+f'(f(x))}+(1/2)(f(x)-x)^2f''(f(x))+(1/6)(f(x)-x)^3f'''(f(x))+...
(1)についてはこの式が示すとおり、右辺は f(x)-x をくくり出せる。
(2)については、多項式ならテイラー展開が有限項で終了するため、「割り切れる」と言えるが、
分数式や無理式の場合は、その限りではない。

449:132人目の素数さん
15/09/15 21:09:35.48 8akIzv6y.net
テイラー展開て…(w)
f が多項式の場合は、
f(x) に x を代入すれば、因数定理から言える。
分数式の場合は、
「割りきれる」って何だよ?いったい。

450:132人目の素数さん
15/09/16 22:01:39.84 S7UxYdIg.net
数学セミナーのエレガント問題の1問目の問題の意味がが分かりにくい

451:132人目の素数さん
15/09/17 00:19:26.02 jFduSAB3.net
□に入る数は?
  ┌┏━━┳━━┓
  │┃03m^2 ┃05m^2 ┃
  04┣━━╋━━┻━┓
 ..m┃□m^2 ┃07m^2     ┃
  │┃      ┃          ┃
  └┗━━┻━━━┛
    └──05m──┘

452:132人目の素数さん
15/09/17 05:24:54.19 06qzLFtg.net
>>442
(4-x)y=3 xy=z x(5-y)=7 (x,y,z)=(2,3/2,3)

453:132人目の素数さん
15/09/17 20:34:26.60 jFduSAB3.net
>>443
(x,y,z)=(14/5,5/2,7)は?

454:132人目の素数さん
15/09/17 20:39:10.68 06qzLFtg.net
>>444
z≦4×5-(3+5+7)

455:132人目の素数さん
15/09/18 00:57:29.06 Tt4bLCB0.net
>>362
「これは全く甘い評価だが、よりきつくする方法は分からない」ってエルデシュが言ってた

456:132人目の素数さん
15/09/19 15:25:20.95 Tw0+rA3T.net
とんでもない新発見が下記のレスに掲載されています。
誰でも普通の電卓で、対数の計算ができる方法です。それも、上位10ケタ以上の精度で。
    スレ名  雑談はここに書け! 【52】 >>909,910
驚くべきことに、{÷1000…0} と {×,=,=,=,=,×,=} の入力を交互に繰り返すだけで、対数の精密な計算ができる。
特に、常用対数の場合、メモですら不要(求める常用対数自体のメモを除いて)。
なお、後者の×と=の入力は、カシオ製の場合、最初に×を二回入力して、{×,×,=,=,=,=,×,=} と入力します。

457:132人目の素数さん
15/09/19 19:03:31.01 YTsbvMiC.net
>>447
思いのほか「スレの反応が悪くて」自演までしているようだな。みっともない奴だ。
「とんでもない新発見」は言い過ぎ。せいぜい「小技」で終わること。
こういうのは、巷にあふれている「暗算が簡単にできる裏ワザ」と同じなんだよ。
あれも「とんでもない新発見」なんて大げさなトーンでは紹介されておらず、
せいぜい「そういう小技があるよ」っていうトーンで話すものだろ。
それもそもはず、既存の計算法をちょっと工夫しただけのシロモノだからな。
この対数計算も同じで、せいぜい「小技」で終わること。
あと、日常的に対数を計算したいような環境なら関数電卓があるはずだから、
この計算法が役に立つ場面は極めて少ない。ていうか、最近はスマホのアプリにも
関数電卓があるので、この計算法は実質的にはオワッテル。この計算法が役に立つ場面といえば、
「対数を計算したいけど、手元にはPCもスマホも関数電卓もなく、しかし普通の電卓だけはある」
という、極めて限定的な状況に限られる。なので、この計算法は実質的には役に立たない。
そういう実用上の意味においても、「暗算が簡単にできる裏ワザ」と同じニオイを感じる。
ああいう話をマジメに実践する人間は ほとんどいないだろ?
読んだ瞬間は「へー面白いね」と思うかもしれないけど。
この対数計算も同じで、せいぜい「へー面白いね」で終わる話。
ちょっと頭を冷やしてこい。

458:132人目の素数さん
15/09/19 19:40:25.05 4/EES2cC.net
自然数x,y,zと3以上の実数nについて、
x^n+y^n=z^nを満たし、xは平方因子を含まないとき、nは無理数であることを証明せよ

459:132人目の素数さん
15/09/19 20:15:13.80 sajS/Wje.net
電卓に強くなる―すぐに役立つ公式


460:ニ実例 http://www.amazon.co.jp/dp/4061179276/ 電卓で遊ぶ数学―これぞ究極の電卓使用術 http://www.amazon.co.jp/dp/4061329413/



461:132人目の素数さん
15/09/19 22:32:25.46 Eg02OxQq.net
俺は>>449を信頼している
だから正しいと思う

462:132人目の素数さん
15/09/19 22:40:30.50 4/EES2cC.net
>>449はフェルマーの最終定理を無条件に使っていいです
一応ヒントとしてはまずnは非整数の負の有理数ということを示して両辺z^nで割ってうまく二項定理を使います

463:132人目の素数さん
15/09/19 22:41:08.24 4/EES2cC.net
ごめんなさい
非整数の負の有理数を示すじゃなくて仮定してでした

464:132人目の素数さん
15/09/19 22:44:27.63 4/EES2cC.net
最訂正すいません
負を仮定じゃなくて正ならそのまま二項定理で負なら分子分母逆にして二項定理と場合分けするということです

465:132人目の素数さん
15/09/20 00:28:52.83 Wk6WNlkk.net
フェルマーの最終定理を持ち出しておいて、残りの鍵は二項定理なのかw

466:132人目の素数さん
15/09/20 01:32:32.42 zUm7npkW.net
a + b = cd
c + d = ab
を満たす自然数a,b,c,dの組を求めよ

467:132人目の素数さん
15/09/20 02:13:42.00 z6zgCrRD.net
>>455
あくまで最初のとっかかりのヒントです
実際に解くには体論を使う必要があります

468:132人目の素数さん
15/09/20 04:11:25.72 MKiplsKL.net
夜中に一人でシコシコ考えちまったよ。
式の対称性よりa,b,c,dの中で最大のものをxとおき残りをy,z,wとおくと
x+y=zw
z+w=xy
が成り立つ
xが最大なので3x>z+wが成り立つ-(1)
xy=z+wと(1)よりyは1か2に限定される
a)y=1のとき
x+1=zw
z+w=x
z+w+1=zw
z(w-1)=w+1
z=(w+1)/(w-1)
w>=4では5/3>=(w+1)/(w-1)>1となりzが整数であることに矛盾する
よってwは2,3に限定される
w=2のときはx=5,z=3
w=3のときはx=5,z=2
が導き出せる
b)y=2のとき
x+2=zw
z+w=2x
x=zw-2
z+w=2zw-4
w+4=z(2w-1)
z=(w+4)/(2w-1)
w>=6では10/11>=(w+4)/(2w-1)>0となりzが整数であることに矛盾する
よってwは2,3,4,5に限定される。
w=2のときx=2,z=2。w=3,4のときzが整数でない。w=5のときz=1,x=3でxが最大に矛盾する
以上より(x,y,z,w)=(2,2,2,2),(5,1,2,3),(5,1,3,2)
よって(a,b,c,d)=(2,2,2,2)(1,5,2,3)(1,5,3,2)(2,3,1,5)(2,3,5,1)(3,2,1,5)(3,2,5,1)(5,1,2,3)(5,1,3,2)

469:132人目の素数さん
15/09/20 09:11:04.85 ukEOKbPU.net
>>458
正解
引用元
URLリンク(detail.chiebukuro.yahoo.co.jp)
引用元の解答
2式を辺々足すと
a+b+c+d=ab+cd⇔(a-1)(b-1)+(c-1)(d-1)=2
(a-1)(b-1)≧0, (c-1)(d-1)≧0より
i) (a-1)(b-1)=0, (c-1)(d-1)=2
ii) (a-1)(b-1)=1, (c-1)(d-1)=1
iii) (a-1)(b-1)=2, (c-1)(d-1)=0
のいずれか
(後略)

470:132人目の素数さん
15/09/20 09:38:05.79 MKiplsKL.net
>>459
上手いもんだな。
感心するわ。

471:132人目の素数さん
15/09/20 09:46:35.03 MKiplsKL.net
よく見返してみると俺の回答微妙にミスってるな。
まあいいや、大筋はあってると思うし。

472:132人目の素数さん
15/09/20 09:53:15.35 bOB7SjJG.net
A:=a-1 とか置けばほぼ終了

473:132人目の素数さん
15/09/20 12:18:32.34 DTuQtUB8.net
n^2+n+2016が平方数となるような自然数nをすべて求めよ

474:132人目の素数さん
15/09/20 14:11:29.93 1+OHl2Py.net
>>463
nが有限であることは証明されているのですか?

475:132人目の素数さん
15/09/20 14:20:14.34 CgP4KDd+.net
>>463
180と2015
8063の素因数分解さえできれば、
最近は高校でも二次の不定方程式を普通に教えるからなあ。

476:132人目の素数さん
15/09/20 14:30:23.94 CMvyaFYq.net
nn


477:+n+2016=:kk (2n+1)^2-(2k)^2=1-4*2016 (2n+2k+1)(2n-2k+1)=-8063 … tasikani 8063 no soinsuubunkaiga mendokusai



478:132人目の素数さん
15/09/20 15:13:14.72 CgP4KDd+.net
(1) (3n-1)(3n+1)+10^7が平方数となる自然数nを全て求めよ
(2) (3n-1)(3n+1)+10^17が平方数となる自然数nを全て求めよ
こうですかわかりません

479:132人目の素数さん
15/09/20 15:19:34.28 CgP4KDd+.net
(3) (3n-1)(3n+1)+10^23が平方数となる自然数nを全て求めよ

480:132人目の素数さん
15/09/20 16:09:20.88 r8IEuWih.net
(3n+1)(3n-1)+10^s=k^2
⇔9n^2-1-k^2+10^s=0
⇔(k+3n)(k-3n)=10^s-1
(1) s=7
10^7-1=9R_7=3^2*239*4649
(2) s=17
10^17-1=9R_17=3^2*2,071,723*5,363,222,357
(3) s=23
10^23-1=9R_23=3^2*11111111111111111111111
URLリンク(ja.wikipedia.org)レピュニット/

481:132人目の素数さん
15/09/20 16:21:31.42 CgP4KDd+.net
>>469
(3n-1)(3n+1)+10^7=9n^2+(10^7-1)が9の倍数なので
9n^2+(10^7-1)=9k^2としておくと
(k-n)(k+n)=(10^7-1)/9
となって、レピュニット数のみの素因数分解の問題になる、という流れを想定してた。

482:132人目の素数さん
15/09/20 16:25:53.81 CgP4KDd+.net
(sageたはずだったのだが、おかしいな)
別スレで4649という数を見かけたので、つい。

483:132人目の素数さん
15/09/20 16:29:07.97 r8IEuWih.net
>>470
なるほど
確認する組も少なくて楽

484:132人目の素数さん
15/09/20 19:11:39.38 CuFRKXU3.net
既出だったらすまない
単位円上に有理点が無限に存在することを示せ
なお、出題者は証明を3つ用意してある

485:132人目の素数さん
15/09/20 19:16:53.47 Wk6WNlkk.net
ググったら出てきた
URLリンク(en.wikipedia.org)

486:132人目の素数さん
15/09/20 19:17:40.94 08dwf8K0.net
ぱっと浮かんだ3つは
・tan(x/2)
・ちぇびしぇふ
・ぺる方程式

487:132人目の素数さん
15/09/20 19:31:34.08 CgP4KDd+.net
ピタゴラス数をいくらでも作れる有名な式を使うのが一番簡単か?
互いに素で偶奇の異なる自然数m,n(m>n)について
(m^2+n^2)^2 = (m^2-n^2)^2 + (2mn)^2

488:132人目の素数さん
15/09/20 19:45:51.67 CuFRKXU3.net
証明1(三角関数のパラメータ表示を使う方法)
tan(k/2)=tとおけば
cos(k)=(1-t^2)/(1+t^2), sin(k)=2t/(1+t^2)
(cos(k), sin(k))は単位円上の点
証明2(交点の座標を求める方法)
URLリンク(www.math.keio.ac.jp)
証明3(ピタゴラス数の生成式を用いる方法)
URLリンク(detail.chiebukuro.yahoo.co.jp)

俺が考えた証明とはいってない(小声)

489:132人目の素数さん
15/09/20 19:59:54.15 /j7kOe4r.net
その3つの違いがわからない

490:132人目の素数さん
15/09/20 20:10:47.87 CuFRKXU3.net
>>477証明1,2は>>476,477証明3でm=1のとき
まあ、多少はね?

491:132人目の素数さん
15/09/21 00:06:52.53 wBw2X2WH.net
他にある?

492:132人目の素数さん
15/09/21 00:12:27.73 SidL6VZ2.net
「x^2+y^2=z^2 ,z>0 を満たす三整数(x,y,z)がある。
 a=z-x、b=z-y としたとき、x,y,zをa,bを使って表せ。」
という問題を想定し、解くと、次の二通りの解が得られる。
x=b±√(2ab)、y=a±√(2ab)、z=a+b±√(2ab)
一つは、最初に用意していた(x,y,z)に一致するが、
X^2+Y^2=Z^2、Z-X=z-x、Z-Y=z-y を満たすもう一つの解(X,Y,Z)も見つかる。
これを共役解と呼ぶことにする。(お互いにもう一方の解を共役解と呼ぶことにする)
例えば、3^2+4^2=5^2からは、a=5-3=2、b=5-4=1となるが、√(2ab)=2なので、
x=1±2、y=2±2、z=1+2±2から、(x,y,z)=(3,4,5)と共役解(-1,0,1)が得られる。
ところが、(3,4,5)が解なら、(-3,4,5)も(-3,-4,5)も(3,-4,5)も
「x^2+y^2=z^2 ,z>0」を満たす解で、(-3,4,5)から、a=8,b=1として、共役解(5,12,13)、
(-3,-4,5)からは共役解(21,20,29)、(3,-4,5)からは共役解(15,8,17)が得られる。
そして、さらに、(5,12,13)を基本の解と思って、(-5,12,13)の共役解
(7,24,25)、(5,-12,13)の共役解(45,28,53)、(-5,-12,13)の共役解(55,48,73)
のように、一つのピタゴラス数から三つの新しいピタゴラス数が見つかり、
新しく見つかったそれぞれのピタゴラス数からも、三つづつのさらに新しい
ピタゴラス数が見つかる。つまり、無限にピタゴラス数を見つけ出すことができる。

493:132人目の素数さん
15/09/21 00:13:01.08 SidL6VZ2.net
2ab=2(z-x)(z-y)=2z^2-2(x+y)z+2xy=x^2+y^2+z^2-2(x+y)z+2xy=(x+y-z)^2 に注意すると、要は
{(z-y)±(x+y-z)}^2+{(z-x)±(x+y-z)}^2={(2z-x-y)±(x+y-z)}^2
という x^2+y^2=z^2下で成立する(条件付き)恒等式に集約される。
複合のプラス側を取ると、x^2+y^2=z^2 となり、価値は無いが
マイナス側を取ると、(2z-x-2y)^2+(2z-2x-y)^2=(3z-2x-2y)^2  (※1)
という、共役解を陽に確認できる式が得られる。
x → -xと変換すると (2z+x-2y)^2+(2z+2x-y)^2=(3z+2x-2y)^2  (※2)
さらに、y → -yと変換すると (2z+x+2y)^2+(2z+2x+y)^2=(3z+2x+2y)^2  (※3)
さらに、x → -xと変換すると (2z-x+2y)^2+(2z-2x+y)^2=(3z-2x+2y)^2  (※4)
のように、一つのピタゴラス数から、三つのピタゴラス数を導く式が得られる。
ピタゴラス数は、(3,4,5)を出発点とする三分木構造に埋め込むことができ、
「適切な方法」を定めれば、ピタゴラス数に、「順番」を与えることが可能。
あるピタゴラス数が示されれば、それが、何番目のピタゴラス数かを言うことも
逆に順番を指定し、それに対応するピタゴラス数を答えることも可能。

過去に 「ひたすらピタゴラス数を書くスレッド」のような掲示板があったので、
そこにたくさんのピタゴラス数を挙げたが、その時、ピタゴラス数発生の
アルゴリズムとして用いたのがこの方法。

494:132人目の素数さん
15/09/21 00:31:06.05 m2zTshdB.net
ピタゴラス数を生み出す行列のはなしだよね

495:132人目の素数さん
15/09/21 01:02:26.15 zlQLS8Fa.net
原始ピタゴラス数が無数に存在する⇔単位円上に有利点が無数に存在する

496:132人目の素数さん
15/09/21 01:30:18.15 zebtZ9PG.net
ピタゴラス数に順番を付けると(a/cを小さい順に並べると)a/cは1/√2に収束するのかな?
感覚的に

497:132人目の素数さん
15/09/21 01:41:07.70 zebtZ9PG.net
全ての原始ピタゴラス数(a,b,c) (a<b)から、a/cを小さい順に並べた数列をa_nとする。
ただしa_0=3/5とする。
lim(n→∞)と lim(n→-∞)をそれぞれ求めよ

498:132人目の素数さん
15/09/21 02:16:00.42 CDfCY14T.net
((3+4i)/5)^a.

499:132人目の素数さん
15/09/21 02:54:59.56 zlQLS8Fa.net
ピタゴラス数は(m^2-n^2, 2mn, m^2+n^2)で表せる
n=1のときを考える
m≧3でm^2-2m-1>0⇔m^2-1>2m
よってm≧3では(a, b, c)=(2m, m^2-1, m^2+1)
さて、Q_m=a/c=2m/(m^2+1) (m≧3)とすると
m→+∞のときQ_m=2/(m+(1/m))→0
0に収束するよ(予想)

500:132人目の素数さん
15/09/21 03:12:40.15 zlQLS8Fa.net
lim(n→-∞)a_n=0だよ(予想)
>>488はガバガバだったな
訂正
ピタゴラス数は自然数m, n (m>n)を用いて(m^2-n^2, 2mn, m^2+n^2)で表せる
m=n+1とおいてnを飛ばすとa/cの上限が見えるか?

501:132人目の素数さん
15/09/21 03:31:03.55 BwSfAQxg.net
>>486
問題として成立していないように思えるが。
そんな数列は作れないでしょ。
言いたいのはこれか?
a^2+b^2=c^2,a<bを満たす互いに素な自然数の組(a,b,c)全ての集合をPとするとき、
{x | x=a/c, (a,b,c)∈P}の上限及び下限を求めよ。
>>486に言うような、小さい順に並べた数列が存在しえないことも証明したいところ。
上記集合Pの,異なる2つの要素を(a,b,c),(d,e,f)(ただし a/c < d/f)とするとき,
あるPの要素(x,y,z)が存在し,a/c < x/z < d/fとなることを示せ。

502:132人目の素数さん
15/09/21 03:43:38.48 BwSfAQxg.net
>>490
というか、これって、前半の問題で上限が1/√2、下限が0であることと
後半の問題の証明を合わせて、
単位円上に有理点が稠密に分布することを言ってるだけだな…

503:486
15/09/21 04:22:23.64 zebtZ9PG.net
数列自体存在しないの?
単位円上の任意の2点の有理点の間には異なる有理点が存在するってこと?
高校数学までしかやってないので用語がわからん…

504:486
15/09/21 04:26:08.81 zebtZ9PG.net
俺の予想ではa/cは0〜1/√2の範囲でa<bの条件を外すと0〜1になると思われる

505:132人目の素数さん
15/09/21 05:01:19.05 BwSfAQxg.net
>>492
小さい順に並べた数列が存在しないというのは
例えば「全ての正の有理数を小さい方から並べた数列」が作れないことを考えてもらえば。
にもかかわらず、「全ての正の有理数を含む数列」は作れるというのが、
無限の数を扱う難しさなのですよ。
>単位円上の任意の2点の有理点の間には異なる有理点が存在するってこと?
そゆことです

506:132人目の素数さん
15/09/21 06:11:57.62 fDJotWMa.net
a^2+(a+1)^2が平方数となるような自然数aは無限に存在するか

507:132人目の素数さん
15/09/21 11:39:04.22 BwSfAQxg.net
>>495
任意の自然数kについて、
(1+√2)^k = m+n√2 (m,nは自然数,mは奇数)と表せること、
さらに、そのm,nを用いて (1-√2)^k = m-n√2と表せることは
数学的帰納法で容易に示せる
kが正の奇数のとき、(1+√2)^k × (1-√2)^k = -1となるので、
(m+n√2)(m-n√2) = -1 ∴ m^2-2n^2 = -1
ここで,mは奇数なので、m=2a+1とおくと、4a^2+4a+1-2n^2 = -1
これを変形すると、a^2+(a+1)^2 = n^2が得られる
異なるkに対して、異なる(a,n)の組が得られるので、
a^2+(a+1)^2が平方数となるようなaは無限に存在する

508:132人目の素数さん
15/09/21 12:31:37.12 H+zc29yF.net
テレンスタオの美しい解き方面白いよ。
回答者目線で数学オリンピックの問題を解く形式。
暇つぶしになる

509:132人目の素数さん
15/09/21 13:52:24.45 fDJotWMa.net
ax^2+bx+c=y^2が無限個の整数解をもつような整数a,b,cの条件を求めよ

510:132人目の素数さん
15/09/21 13:53:22.27 bh279fIm.net
>>495
x_{n}^2+y_{n}^2=z_{n}^2、 が成立するとき
x_{n+1}=2*x_{n}+1*y_{n}+2*z_{n}
y_{n+1}=1*x_{n}+2*y_{n}+2*z_{n}
z_{n+1}=2*x_{n}+2*y_{n}+3*z_{n} とすると、(>>482 の※3 で、xとyを入れ替えたものに相当)
x_{n+1}^2+y_{n+1}^2=z_{n+1}^2 が成立する 
このとき、y_{n+1}-x_{n+1} = y_{n}-x_{n} なので、差が保存される。
3^2 + 4^2 = 5^2 というものが存在するので、a^2+(a+1)^2が平方数となるようなものは無数にある。

511:132人目の素数さん
15/09/21 19:37:27.38 mNqic+mi.net
中卒で分かりませんがツエータ関数というものがあるらしいです
φも分かりませんでもユークリッド正三角形なるものは
a点b点交わるところのq点が有るのでしょうか
分かりませんごめんなさいでした割り込んで

512:132人目の素数さん
15/09/21 19:48:26.68 zlQLS8Fa.net
ζ(ゼータ/ツェータ)関数?
何の問題かも分からんし
そもそもスレチでしょ
分らない問題はここに書いてね404 [転載禁止]©2ch.net
スレリンク(math板)

513:132人目の素数さん
15/09/21 21:17:29.58 gtDqKY3a.net
正方形を直角三角形を除く8枚の鋭角三角形のみで分割できることを示し、それが最小枚数であることを証明せよ

514:132人目の素数さん
15/09/21 21:52:18.63 Z3V2IWKL.net
鋭角三角形は無理じゃね?
どこかしら鈍角になりそうな

515:132人目の素数さん
15/09/21 22:07:19.88 BwSfAQxg.net
>>502
10枚ならできた。
8枚かあ…

516:132人目の素数さん
15/09/21 22:38:44.71 BwSfAQxg.net
8枚できた。
例:A(0,20),B(0,0),C(20,0),D(20,20),M(10,0),N(10,20),P(9,4),Q(11,4)
PA,PB,QC,QD,PM,PN,QM,QN,PQを結ぶ
証明はまだ。

517:132人目の素数さん
15/09/21 22:44:59.52 BwSfAQxg.net
ちなみに、P,Qを取る場所は,
AB,CD,BM,CM,AN,DNを直径とする6つの円のいずれにも含まれない
上下2箇所の領域の片方の中に,大体左右対称に取ればよい。

518:132人目の素数さん
15/09/22 16:07:30.17 ZLtLRDuu.net
>>502
正方形ABCDを鋭角三角形で分割するとき、
A,B,C,Dからそれぞれ1本以上の辺が出ていなければならない。
仮に、辺BC上(Bを除く)に点EがあってAEを辺にもつ三角形があるとすると、
三角形ABEは直角三角形なので、AE上に頂点をとらなければ
鋭角三角形で分割できない。
点Eが辺CD上にある場合も同様。
よってAから出る辺は、正方形の内部にある頂点につながっている。
B,C,Dについても同じことがいえる。
仮に、正方形の内部に頂点が1個しかないとして、これを点Fとすると、
A,B,C,Dから出る辺はFにつながっていることになる。
∠AFB,∠BFC,∠CFD,∠DFAのいずれかは90°以上であるが、
どの場合も同様なので∠AFB≧90°とする。
このときFとAB上の点Gを結ぶ辺が無ければならない。
∠AGFか∠BGFのいずれかは90°以上なので、
Gから辺が出ていて、AFまたはBFと交わることになってしまい、
正方形の内部に頂点が1個しか無いという仮定に矛盾する。
よって正方形の内部には2個以上の頂点がある。
そのうちの2個をH,Iとする。
H,Iからそれぞれ5本以上の辺が出ていなければならず、
H,Iを頂点とする鋭角三角形は5個以上あることになる。
これらのうち重複するものがあるとすればHIを辺とするものであり、
その個数は最大2個である。
よって鋭角三角形の個数は少なくとも5+5-2=8個以上である。

519:132人目の素数さん
15/09/22 21:03:47.21 lhGzKtWu.net
内部の点には頂点しか集まらないことが前提になってない?
1つの辺と3つの頂点が集まっている場合もある。
例えば、ある内部点の回りが180°、60°、60°、60°で区切られている場合とか

520:132人目の素数さん
15/09/22 21:18:16.16 ZLtLRDuu.net
>>508
そういうものも含めて頂点と呼んでいるので、問題ないはず。

521:132人目の素数さん
15/09/22 22:13:30.88 V9wMy4Aa.net
>>509
>H,Iからそれぞれ5本以上の辺が出ていなければならず、
>H,Iを頂点とする鋭角三角形は5個以上あることになる。
のあたりで、H,Iが辺の途中にある可能性を無視していることを
指摘しているのだと思うが。
自分も、三角形の辺の途中に他の三角形の頂点があるケースがあるせいで
(つまり、グラフとしては四角形もしくはそれ以上で頂点にできる角が180°の物
の存在を排除できないため)
シンプルな場合分けができず面倒になってギブアップした。
正方形の4頂点以外に辺上に最低でも1点、内部に最低でも2点が存在することまでは
すぐ言えるのだが。

522:132人目の素数さん
15/09/22 22:26:29.90 ZLtLRDuu.net
>>510
あー、なるほど。その可能性をおもいっきり見逃してた。
>>507を土台にうまく修正できるかどうか。
それとも、まるっきり考え方を変える必要があるのかな?

523:132人目の素数さん
15/09/24 03:04:42.06 VcRgqQ8I.net
n個の鋭角三角形に分割できたとして
正方形の頂点以外の頂点の個数をvとすると
各頂点に集まる内角の個数に関して
3v+8≦3nよりv≦n-3
ここでn≦7とするとv≦4
よってv≦4かつn≦7となるような分割が存在しないことが示せればよい
あとは頼んだ

524:132人目の素数さん
15/09/26 01:59:16.33 KGE6XyvT.net
この問題か
Acute Square Triangulation
URLリンク(www.ics.uci.edu)

525:132人目の素数さん
15/09/26 01:59:41.85 KGE6XyvT.net
Survey of two-dimensional acute triangulations
Discrete Math. 313, Iss. 1 (2013) 35–49.
URLリンク(czamfirescu.tricube.de)

9頁
In the same busy year of 1960, Lindgren [54] described an acute triangulation of
the square (see Fig. 6), proving that it can be done with 8 triangles and that this is
optimal – Federico solved this independently in the same year. In 1966, Gardner also
gave a construction, which he reports in one of his mathematical columns (reprinted
in [35]), saying: “For days I was convinced that nine was the answer; then suddenly I
saw how to reduce it to eight”. We remark that, in fact, Gardner was trying to find
dissections of the square, and it happened that his configuration on eight triangles is a
triangulation. If he were looking for triangulations, this would have contradicted the
following matter.
Cassidy and Lord [15] continued the investigations of acutely triangulating the
square, publishing their results in 1980. They gave an alternative proof of the min-
imality (and combinatorial uniqueness) of the Federico-Lindgren construction on 8
triangles. They also showed that there is no triangulation consisting of exactly 9 tri-
angles, and proved that there exist acute triangulations of the square with k triangles
whenever k ≥ 10.

[54] H. Lindgren. A quadrilateral dissection. Austral. Math. Teacher 16 (1960) 64–65.
[15] Ch. Cassidy and G. Lord. A square acutely triangulated. J. Recr. Math. 13 (1980–
81) 263–268.

526:132人目の素数さん
15/09/26 02:39:33.02 MgrWGZzr.net
Journal of Recreational Mathematicsが大学の図書館にあるか判らん

527:513
15/09/26 03:05:19.37 MgrWGZzr.net
あるっぽいな

528:132人目の素数さん
15/09/26 04:08:58.11 jeE3BpXh.net
URLリンク(math.a.la9.jp)
正方形じゃなくて鈍角三角形バージョンの問題と解答を発見

529:132人目の素数さん
15/09/26 10:46:23.47 aSIv8JvA.net
>>513
どうやって見つけたんだ?貴様は神か?

530:513
15/09/26 11:20:48.61 smOIV1i/.net
>>518
divide square into acute triangle
でググっただけです(小声)

531:132人目の素数さん
15/09/26 19:43:56.60 Jz1cA5oo.net
よくわからんけど三角形分割ってことは
頂点が三角形の辺上にあるケースはそもそも考慮されて泣くね?

532:132人目の素数さん
15/09/27 04:15:48.86 qZeHHCLI.net
>>514の[15]を上げるまでの暇潰しに
URLリンク(www.itmedia.co.jp)
この時計は全ての時刻を表現可能である
(証明はスレリンク(math板:136-138番)
この周辺で面白い問題を作ってよ

533:132人目の素数さん
15/09/27 20:53:09.22 ONZsfJnq.net
上の時計で全ての正方形が光る回数の最小値と最大値を求めよ

534:132人目の素数さん
15/09/28 03:41:57.77 NXSABs39.net
>>522
12時は0と12のどちらを表示するのかによって話は変わるな。

535:132人目の素数さん
15/09/28 04:11:24.95 NXSABs39.net
>>522
ちなみに、最大の方では、時と分を表す数字を足して12以上になる場合のうち、
全ての正方形がひかる可能性がないのは8と8(8時40分)の場合のみ。
最小の方では、時または分が12を表示する場合のみ必ず全ての正方形がひかる。
分は12を表示することはないようなので、
時が1から12ならば12時台のみ必ず全てひかる。
0から11ならば、1の正方形のうちの片方は使わなくてもよくなる。
(ということは、やっぱり12時は12を表示するのだろうな)
(正確に言うと、「ひかる」ではなく「色がつく」だな)

536:132人目の素数さん
15/09/28 06:44:31.35 VbfJNND9.net
このスレでは未出題のようだから
n,n+2,n+4がいずれも素数になる自然数nを全て求めよ

537:132人目の素数さん
15/09/28 07:59:34.04 qwCqNxiY.net
つまらなすぎ

538:132人目の素数さん
15/09/28 09:45:45.18 NCZ2EFYi.net
ひねりがなんもないよな

539:132人目の素数さん
15/09/28 10:02:28.23 jlLelCrV.net
与えられた円の中心をコンパスのみで特定せよ

540:132人目の素数さん
15/09/28 22:29:57.43 NXSABs39.net
>>528
円周上にAB=BCとなるような3点A,B,Cを適当にとって
AB=BC=a、CA=bとおくと、
円の半径はa^2/√(4a^2-b^2)なので、その長さを
URLリンク(www.shinko-keirin.co.jp)
あたりを参考に作図すればいいよ

541:132人目の素数さん
15/09/29 02:25:06.10 nc3nLp6q.net
>>528
弦の垂直2等分線どうしの交点を求めるだけだが、
もしかして、定規は使っちゃいけないのか?

542:132人目の素数さん
15/09/29 03:19:11.03 azN8533W.net
コンパスだけでしょ

543:132人目の素数さん
15/09/29 04:16:04.08 /gO4uSCx.net
方眼紙上で定木のみを用いて面積7の正方形を作図できるか?
方眼紙の1つの升目の面積を1とする

544:132人目の素数さん
15/09/29 04:20:11.75 /gO4uSCx.net
つまり、面積が2平方数の和ではない正方形は作図できるか?

545:132人目の素数さん
15/09/29 08:15:26.52 2tetWzJ3.net
>>532
1x6のマス目の対角線は√7
これで正方形を作る

546:534
15/09/29 08:17:23.37 2tetWzJ3.net
間違ってた
上の無しで

547:132人目の素数さん
15/09/29 16:03:39.90 b0As/vwW.net
>>532
まず、定木のみの作図で新たに作れる点は、
既に存在する2点間を結んだ2直線の交点だけなので、
最初に格子点のみが全て与えられている状態から作図できるのは有理数点のみ。
2つの有理数点間の距離が√7になるとすると
x^2+y^2=7(x,yは有理数)となり、
x=m/k、y=n/k(m,nは整数,kは自然数で,m,n,kの最大公約数は1)とおくと,
m^2+n^2=7k^2とおける
ここで、整数Nについて
N^2≡0,1,2,4(mod 7)であり、N^2≡0となるのはNが7の倍数のときだけなので、
m^2+n^2≡0(mod 7)より、mもnも7の倍数となるが、
その場合、kも7の倍数となり、m,n,kの最大公約数は1という条件に矛盾する
よって、そのような有理数x,yは存在しないので、√7は作図できない。
√7の場合は、m,nの偶奇で場合分けしてmod 4で議論する手もあるが、
>>533のように一般化した議論では
2平方数の和ではない自然数の条件が、
n=a^2×b(a,bは自然数で、bは平方因子を持たず4k+3型の素数を因数として持つ)
というものなので、bの素因数である4k+3型の素数をpとしてmod pで議論するのが
より一般性がありそうだと考えた

548:132人目の素数さん
15/09/29 23:19:15.07 1WvbOcmu.net
F(1)=F(2)=1
F(n+2)=F(n+1)+F(n)
のときΣ[k=0~∞]1/F(2^k)を求めよ

549:132人目の素数さん
15/09/29 23:40:04.23 MmwWCV56.net
F(0)の値が定義されてないぞ

550:132人目の素数さん
15/09/29 23:45:51.82 sCkKbHjD.net
それが何か?

551:132人目の素数さん
15/09/30 01:12:56.07 W4f7D5tC.net
>>573
たまげたなあ
ネタバレ注意
URLリンク(imgur.com)

552:132人目の素数さん
15/09/30 01:14:25.58 W4f7D5tC.net
>>540>>537

553:132人目の素数さん
15/09/30 09:58:15.18 dmcZQwC0.net
>>540
kwsk

554:132人目の素数さん
15/09/30 10:50:49.83 lYRAE3q3.net
>>542
ウルフなんとかにぶちこんだだけ

555:132人目の素数さん
15/09/30 16:06:49.22 P+qfF9ot.net
>>537
F_{k-1}/F_{k} - F_{2k-1}/F_{2k} = ... = (-1)^k/F_{2k}
特に、kが偶数なら F_{k-1}/F_{k} - F_{2k-1}/F_{2k} = 1/F_{2k}
Σ[k=0~n]1/F(2^k) = 1/F(1) + 1/F(2) + Σ[k=2~n]1/F(2^k)
= 2 + Σ[k=2~n][ F_{2^(k-1)-1}/F_{2^(k-1)} - F_{2^k-1}/F_{2^k} ]
= 2+ F_{1}/F_{2} - F_{2^n-1}/F_{2^n} → 3 - 2/(1+√5) = (1/2)(7-√5) (n→∞)

556:132人目の素数さん
15/10/02 16:20:22.89 PIlMCyTn.net
F_1=F_2=1
F_(n+2)=F_(n+1)+F_n
のとき
Σ[n=1,∞](10^(-n))F_n
を求めよ
すなわち
0.1+0.01+0.002+0.0003+0.00005+0.000008+0.0000013+0.00000021+...
を求めよ

557:132人目の素数さん
15/10/02 19:05:28.58 ibVc9iom.net
F0=0として
G(x)= F0 + F1*x + F2*x^2 + F3*x^3 + ... + Fn* x^n + ... とすると
x*G(x)= F0*x + F1*x^2 + F2*x^3 + ... + F(n-1)* x^n + ...
x^2*G(x)= F0*x^2 + F1*x^3 + ... + F(n-2)* x^n + ...
ここで、Fn=F(n-1)+F(n-2)をつかうと
G(x) - F0 -F1*x = (x*G(x) - F0*x) + x^2 G(x)
つまり、G(x)=x/(1-x-x^2)
G(1/10)=10/89

558:132人目の素数さん
15/10/03 02:38:38.28 YaYUqMJy.net
F(1)=F(2)=1
F(n+2)=F(n+1)+F(n)
としてF(n)が2015の倍数となるような最小の正整数nは偶数かそれとも奇数か

559:132人目の素数さん
15/10/03 09:36:33.30 UXtZmLrn.net
>>547
mod 5


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

6日前に更新/286 KB
担当:undef