面白い問題おしえて〜 ..
[2ch|▼Menu]
318:132人目の素数さん
15/09/03 07:36:05.84 bNPipVA3.net
>>312
五つの相異なる正整数a,b,c,d,eに対し、十通りの和 a+b、a+c、a+d、...、d+e全てが、2^m*p^n 型になるような5数の選び方は無いことを証明すればよい。
これが示されれば、五つの相異なる正整数を選べば、必ずその中に、2^m*p^n型で無い二数の和が有ることになり、それは、2、p以外の素因数を持つ。
そのような5数a,b,c,d,eが見つかったとすると、2a,2b,2c,2d,2e、も自動的に条件を満たすので、5数の内少なくとも一つは奇数としてよい。(※)
同様に、pa,pb,pc,pd,pe、も自動的に条件を満たすので、5数の内少なくとも一つはpで割り切れないとしてよい。(※※)
(a+b)+(a+c)+(b+c)=2(a+b+c)なので、(a+b),(a+c),(b+c)の中に奇数は0個か2個ある → a,b,cに奇数は1個か3個ある。
同様の議論を、(a+c),(a+d),(c+d)の間等でも行い、(※)も考慮すると、結局、a,b,c,d,e全てが奇数であるとしてよい。
(a+b)、(a+c)、(b+c)はいずれもpの倍数だとすると、(a+b) + (b+c) = (a+c) + 2b であるから、bもpの倍数でなければならない。
すると、aもc、pの倍数となる。この検討を(a+c),(a+d),(c+d)等へ波及していくと、結局、abcde全てが、pの倍数でなければならなくなり、(※※)に違反する
つまり、(a+b)、(a+c)、(b+c)の中に、2^m型の数がある。(mは明らかに2以上)
仮にそれをa+b=2^sとし、b+c=2^x*p^y,a+c=2^u*p^vとすると、(a+b) + (b+c) = 2^s + 2^x*p^y = (a+c) +2b = 2^u*p^v + 2b
b= 2^(s-1) + 2^(x-1)*p^y - 2^(u-1)*p^v となるが、bは奇数なので、xかuの一方は1、他方は2以上でなければならない。
つまり、(a+b)、(a+c)、(b+c)のように、a,b,c,d,e中から3数を選び、その中の組み合わせで作った三つの和は、
一つは2^m型(以後A型)、一つは2*p^n型(B型)、一つは、2^s*p^t ただしs≧2(C型)と、明確に3種類に分けることができる。
しかし、十通りの和を、矛盾無くこの3種類に分類することはできなく(下参照)、文頭の命題が証明される。


次ページ
続きを表示
1を表示
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

3016日前に更新/264 KB
担当:undef