面白い問題おしえて〜 ..
[2ch|▼Menu]
179:132人目の素数さん
15/06/26 12:09:01.54 IIy/cicI.net
1/2を期待できる方法(小道具を使うが、1回で完了)
コインの表を偶数、裏を奇数に対応づけ、コインを振り、止まった瞬間に時計の秒針を見て
偶数か奇数かをチェック。コインの偶奇と一致するかどうかで判定
ほぼ1/2を期待できる方法
でやすい面を表、でづらい面を裏と表すこととし、表のでる確率をpとする
コインを繰り返し振り、n回目の裏がでたのが、偶数回目だったか、奇数回目だったかで判定
確率pに対応して、下のようなnを採用すれば、最大誤差1%程度になる。
0.99<p<1 なら、n=1で十分。
初めて裏がでるのが偶数回目となる確率=p(1-p)+p^3(1-p)+...=p/(1+p)
初めて裏がでるのが奇数回目となる確率=(1-p)+p^2(1-p)+...=1/(1+p)
0.8<p<0.99 なら、n=2辺りを用いる
二回目の裏がでるのが偶数回目となる確率=(1-p)^2+C[3,1]p^2(1-p)^2+...=(1+p^2)/(1+p)^2
二回目の裏がでるのが奇数回目となる確率=2p/(1+p)^2
0.6<p<0.8 なら、n=3辺り
3回目の裏がでるのが偶数回目となる確率=3p(1-p)^3+C[5,2]p^3(1-p)^3+...=(3p+p^3)/(1+p)^3
3回目の裏がでるのが奇数回目となる確率=(3p^2+1)/(1+p)^3
0.5<p<0.6 なら、n=4
4回目の裏がでるのが偶数回目となる確率=(1-p)^4+C[5,3]p^2(1-p)^4+...=(p^4+6p^2+1)/(1+p)^4
4回目の裏がでるのが奇数回目となる確率=(4p^3+4p)/(1+p)^3

180:132人目の素数さん
15/06/26 12:13:45.71 ya3KuOPO.net
あ、最後の行、ミスってる
×:4回目の裏がでるのが奇数回目となる確率=(4p^3+4p)/(1+p)^3
○:4回目の裏がでるのが奇数回目となる確率=(4p^3+4p)/(1+p)^4
ごらんのように、パスカルの三角形が登場してます。

181:132人目の素数さん
15/06/26 12:44:04.27 /ysslOVn.net
コイン以外のところから、確率1/2の事象を引っ張ってくるのは出題者の意図とはたぶん違うんじゃないかね。
それだったら、コインいらないし……。

182:132人目の素数さん
15/06/26 20:46:11.23 h7iWFEKI.net
>>175
ちょっと考えた
pが既知かつ近似解で良い場合
中心極限定理で適当にやればp=0,1以外はどうにでもなる
pが既知かつ厳密解が欲しい場合
初めて表が出るまでの回数をNとしてNが特定の回数だった場合を
新たに「表」として定義する
N=nの確率はp*(1-p)^(n-1)となるので適当に組み合わせれば
p=0,1以外なら任意の精度で「表」の確率が定義できそう
pが未知の場合
ベイズ的には初回は必ず1/2
と言うのは冗談だがpを推定してから上記の場合に持ち込むのかな

183:132人目の素数さん
15/06/26 20:53:56.32 h7iWFEKI.net
>>182に補足
元のお題は最小回数の作り方だから
pが既知かつ厳密解が欲しい場合については
N回投げて各出目の確率の和が1/2になる
組み合わせが見つかったらそれが最小のN

184:132人目の素数さん
15/06/27 00:30:06.71 /+u9NzxP.net
>>175 は、確率は未知という設定じゃないとつまんないので、自分はそっちで考える。
確率は未知であっても、確実に1/2の確率を実現できる方法を考えて、
回数の期待値は、未知だけど実際には存在する確率pの関数として表す。
「期待値最小」ということを厳密にどう判定するかは難しいが、
まずはよりよい関数となる手法を考え、もしかしたら
「pが未知でも成り立つ手法の中では、どんなpに対しても最小の期待値を持つ」手法が
存在するのかもしれない。
ちなみに、>>178 の「基本となる手法」で期待値を計算すると1/(p(1-p))となる。
(p=1/2で最小値4をとる)
>>177 の手法ではそれよりもどんなpにおいても小さい値になるのは明らかだが、
うまい計算方法が見つからなくて困ってる。

185:132人目の素数さん
15/06/27 03:03:16.58 /+u9NzxP.net
>>177 の期待値
f(p) = Π[n=0,∞](1+p^(2^n)+(1-p)^(2^n))
となるようだ。
>>178 の「基本となる手法」の期待値
g(p) = 1/(p(1-p))
と比較すると、こんな感じ。
p g(p) f(p)
0.1 11.111 10.585
0.2 6.250 5.698
0.3 4.762 4.186
0.4 4.167 3.574
0.5 4.000 3.401

186:132人目の素数さん
15/06/27 03:30:28.63 /+u9NzxP.net
pが未知なら、>>177が最強な気がしてきた。
誰か証明もしくは反証よろしく

187:132人目の素数さん
15/06/27 09:14:57.33 S/MSoatr.net
>>177の判定原理は表と裏の回数が等しい試行を組にして
「表」「裏」と名づけていると見ることができる
ゆえに>>178が最短の判定方法となっていることが証明できる

188:132人目の素数さん
15/06/27 12:56:11.26 AqwryHTX.net
177(178)の方法において、どの出方はAが勝ちか、どの出方はBが勝ちか決めてみることにする。
その決め方は複数(多数)候補があるけれど、いいやりかたを選べば、
(177(178)の方法を使ったときに)ある場面において、表がでても裏が出てもAが勝ち(あるいはBが勝ち)
という場面を作り出すことができそう。
そういう場面が出来たなら、そこは実はコインを投げる必要がないということになる。
そして期待値は下がる。
となりそうな気がする。

189:132人目の素数さん
15/06/27 14:30:27.03 /+u9NzxP.net
>>188
なるほど。>>177 のルールのままだと、最後が表なら○と決めているので
最後まで決着しないけど、判定の部分のルールをたとえば
・N回目とN-2^(k-1)回目のコインの表裏が異なる場合、
 kが奇数ならば、N回目は表なら○、裏なら×で決着。
 kが偶数ならば、N回目は表なら×、裏なら○で決着。
としておけば、
表表裏
となった時点で、4回目は表でも裏でも○になるから
追加ルールとして
・その後のコインの表裏によらず、○か×かが確定した時点で、コインは投げない
というのを入れとくと、さらに回数の期待値は減るわけですね。
ううむ、最強からはほど遠かったか。

190:132人目の素数さん
15/06/27 14:33:16.85 /+u9NzxP.net
(さすがに、>>189 のルールでの期待値の計算はあきらめた)

191:132人目の素数さん
15/06/27 14:50:27.11 /+u9NzxP.net
>>188-190
よく考えたら、チェックポイントの2手以上前に○×が確定することは
ありえない(最後の2回が表裏と裏表で必ず○×が異なる)ので、
>>177のルール変更を
・N回目とN-2^(k-1)回目のコインの表裏が異なる場合、
 N-1回目が表なら○、裏なら×で決着。
とでもしておくと、元のルールで表でも裏でも決着するケースでは
確実に1手減らすことができますね。
この方向性での改善としてはこれが最良かな。

192:132人目の素数さん
15/06/27 16:41:16.45 imKgYOrh.net
n次元空間にn+1個の頂点があり、全ての面が正三角形となる超立体の体積をエレガントに求めよ。

193:132人目の素数さん
15/06/27 19:40:48.41 n9T/LEaD.net
f(n)=2n^2+29と定める.
f(0),f)1),f(2),f(3)はいずれも素数であることが分かっている.
このとき,f(4),f(5),...,f(28)も全て素数であることを示せ.
ただし, 各fの値を実際に求めたり, 素数で順に割ったりしてはならない.

194:132人目の素数さん
15/06/27 19:41:47.15 iChne//v.net
>>175
これ、極端に考えればp=1.0でも題意を満たす必要があるんじゃ?

195:132人目の素数さん
15/06/27 20:29:05.21 iv70QRnH.net
p=1.0の場合はどのみち不可能なんだから期待値は∞ってことで問題なくね?

196:132人目の素数さん
15/06/27 21:37:06.11 1W0Ez/9a.net
(1)
自然数nに対して
(Σ[k=1..n],1/k)=P(n)/Q(n)
をみたす実数係数の多項式P(x),Q(x)は存在しないことを示せ
(2)
数列a(n)を
a(1)=2,a(n+1)=(1/(a(1)*a(2)*a(3)*....a(n)))-1
として定義する。
この時、nが偶然ならば、数列a(n)は定数数列であることを示し、その値を求めよ

197:132人目の素数さん
15/06/27 21:43:26.06 /+u9NzxP.net
>>192
1辺が1のn次元の正単体のn次元の体積をV(n),中心から各頂点までの距離をR(n)とする。
V(1)=1,R(1)=1/2
n+1次元空間内に1辺1のn次元の正単体X(n)を配し、X(n)の各頂点から距離1となる点Aをとると、
AとX(n)はn+1次元の正単体X(n+1)を構成する。
AからX(n)におろした垂線の足をM、X(n+1)の中心をO、X(n)の1つの頂点をBとすると、
OA=OB=R(n+1)、MB=R(n)であり、
X(n+1)の各頂点に重さ1の質点を置いた時の重心がOであることからOA:OM=n+1:1となり、
OM=R(n+1)/(n+1)
OB^2-OM^2=MB^2(三平方の定理)より、整理すると(n(n+2)/(n+1)^2)(R(n+1))^2=(R(n))^2
∴ ((n+2)/(n+1))(R(n+1))^2=((n+1)/n)(R(n))^2=…=(2/1)(R(1))^2=1/2
∴ (R(n))^2=n/(2(n+1))
AM=((n+2)/(n+1))R(n+1)より、
V(n+1)=(1/(n+1))・AM・V(n)=((n+2)/(n+1)^2)R(n+1)V(n)
(V(n+1))^2=((n+2)^2/(n+1)^4)((n+1)/(2(n+2)))(V(n))^2=((n+2)/(2(n+1)^3))(V(n))^2
n≧2において
(V(n))^2=Π[k=1,n-1]((k+2)/(2(k+1)^3))
=((n+2)!/2)/(2^(n-1)・(n!)^3)=(n+1)/(2^n・(n!)^2)
∴ V(n)=(1/n!)√((n+1)/2^n)
n次元の錐体の体積が (1/n)・底面積・高さ であることは断りなく使った。
エレガント、ではない。

198:132人目の素数さん
15/06/27 21:45:05.79 1W0Ez/9a.net
(3)
面積および外接円の半径が全て整数であるような三角形は無数に存在することを示せ。
ただし相似な三角形は除く。

199:132人目の素数さん
15/06/27 21:48:38.69 /+u9NzxP.net
(数式を、カッコ多用ではなくちゃんと紙に書けば、そんなにゴチャゴチャはしてないんだよ…)

200:132人目の素数さん
15/06/27 21:52:29.64 /+u9NzxP.net
>>198
辺の長さは整数じゃなくていいのか?

201:132人目の素数さん
15/06/27 21:58:42.68 1W0Ez/9a.net
>>200
どちらでも構わない

202:132人目の素数さん
15/06/29 04:10:45.50 jBA8xQxN.net
>>196
(1) そのようなP(x),Q(x)が存在するとして矛盾を導く。
lim[n→∞](1/log n)Σ[k=1..n],1/k=1であるから、
lim[n→∞](1/log n)(P(n)/Q(n))=1 でなければならないが、
P(x)とQ(x)の最高次数に注目して計算すると矛盾することが分かる。■
(2) nが偶数なら a(n)=−1/2, nが3以上の奇数なら a(n)=−2が
成り立つことが数学的帰納法で証明できる。■

203:132人目の素数さん
15/06/29 04:31:16.19 jBA8xQxN.net
>>198
そのような三角形の無限列であって、互いに相似でないものが
構成できることを証明しようかと思ったが、別にその必要はなかった。

(3) 面積と外接円の半径が整数であるような三角形の集合をMと置く。
M上の二項関係〜を以下のように定義する。
a,b∈Mに対して、a〜b ⇔ aとbは相似.
このとき、〜はM上の同値関係となることが分かる。
a∈Mの同値類を[a]と書くことにする。同値類の集合M/〜は
M/〜={ [a]|a∈M }と表せる。このM/〜が無限集合であることを
示せばよい。以下の補題を使う(証明は後回しにする)。
補題:任意の正整数nに対して、次を満たすA⊂Mが存在する。
・Aはn元集合.
・Aの任意の異なる2元は相似でない.
この補題により、各nに対して対応するA⊂Mを取れば、次が成り立つ。
・{ [a]|a∈A }⊂M/〜.
・{ [a]|a∈A }はn元集合.
従って、M/〜は少なくともn個の元を含む。nは任意だから、
M/〜は無限集合である。最後に、上の補題を証明する。

204:132人目の素数さん
15/06/29 04:43:55.79 jBA8xQxN.net
補題の証明:半径がnの円Sを用意し、S上の3点A,B,Cを、三角形ABCが正三角形であるように取る。
円Sにおける弧BCは2つあるが、その中で短い方の弧をL1とする。L1から両端点B,Cを除いたものをL2とする。
L2上の点Pを任意に取ると、三角形APBについて、次が成り立つことが分かる。
(i) ∠PAB < 60°<∠PBA.
(ii) ∠APB=60°.
(iii) APBの面積をs(P)と置くと、0<s(P)<(3√3/4)n^2 が成り立つ.
(iv) P→Bのときs(P)→0であり、P→Cのときs(P)→(3√3/4)n^2 である.
さて、s(P)はP∈L2に関して連続関数であるから、(iii)と(iv)にも注意して、中間値の定理から、
任意のλ∈(0, (3√3/4)n^2) に対して、s(P)=λを満たすようなP∈L2が存在する。
特に、λが正整数のときを考える。(3√3/4)n^2>nであるから、λとしては
少なくとも1,2,…,nまでが選べる。対応するPをP_1,…,P_n とする。
三角形AP_iBをa_iと置けば、a_iの面積は i であり、a_iの外接円の半径はnである。
従って、a_i∈Mである。A={ a_1,…,a_n } と置けば、このAが題意を満たす。
実際、Aがn元集合であることは明らか。Aの任意の異なる2元が相似でないことは、
a_iの3頂点の角度に注目すればすぐに従う(具体的には(i),(ii)を使う)。■

205:132人目の素数さん
15/06/30 20:34:38.25 H5GoaVHE.net
>>198
3辺の長さを
4n+2, 4n^2*4n, 4n^2+4n+2
とすれば、面積は4n(n+1)(2n+1), 外接円の半径は2n^2+2n+1

206:132人目の素数さん
15/06/30 22:09:05.54 M1LX+grn.net
>>198
0より大きく1未満の任意の有理数 t を持ってきて、それを t=b/a と表したとき
(つまり、aとbは互いに素で、0<b<aの整数)
a^2-b^2,2ab,a^2+b^2
の3数は、原始ピタゴラス三角形の3辺を成す。その二倍形
2(a^2-b^2),4ab,2(a^2+b^2)
は、>>198の条件を満たす。

なお、205の例(4n^2*4nは4n^2+4nの誤植と思われる)は、ここに挙げたもので
a=b+1 としたものにあたる

207:132人目の素数さん
15/07/01 01:01:33.17 rdTrEG2D.net
>>205-206
その答えは、おととい
「高校生が自作問題を世に問うスレ」
の ≫584 に書いといたのと、同じものだな。

208:132人目の素数さん
15/07/03 23:23:02.20 rGXRJhyh.net
一次独立な2つのベクトルx↑、y↑について
|x↑|≦|x↑+y↑|が成り立っているならば
任意の実数a≧1に対して |x↑+y↑|≦|x↑+a*y↑|となることを示せ。

209:132人目の素数さん
15/07/03 23:43:12.41 hJIQsZ5a.net
最近話題のルーローの三角形形の掃除機ロボットを見て思いついた問題。
直径1の正方形の内部で、直径1のルーローの三角形が滑らかに回転するとき、
ルーローの三角形が通過する領域の面積を求めよ。

210:132人目の素数さん
15/07/04 13:02:24.94 fKcIqKgn.net
わりときれいな値になるんだな。
それに検索してみると、この動き自体がなかなかおもしろい。

211:132人目の素数さん
15/07/04 13:20:18.83 ZDm2eXaJ.net
内部に入らない。

212:209
15/07/04 21:29:26.26 TU5VZOTE.net
ちなみに俺は解けなかったぜ

213:209
15/07/04 23:13:12.35 TU5VZOTE.net
解けたかも
2√3+Π/6-3=0.9877…
あってる?

214:132人目の素数さん
15/07/05 00:09:18.45 yb6nmQkj.net
>>213
πが大文字なのを除けば、同じ答えになった。

215:132人目の素数さん
15/07/05 00:26:02.25 xGfPr6DD.net
たぶんそれであってる
URLリンク(mathworld.wolfram.com)
URLリンク(en.wikipedia.org)
URLリンク(ddincrement.blog.shinobi.jp) 👀
Rock54: Caution(BBR-MD5:18e3ad85d511352dc19ab55963b20571)


216:209
15/07/05 09:16:02.23 38VAmmOq.net
おお、スッキリした。
正三角形の頂点の軌跡を求めて解いたけど、
頂点以外の部分がこの領域からはみ出ないことを示すのは、
(直感的には明らかだけど)まじめに証明するのは結構大変な気がする。

217:132人目の素数さん
15/07/05 19:10:04.37 xGfPr6DD.net
たしかに証明しろって言われたら
えっ・・・ってなる

218:132人目の素数さん
15/07/05 22:24:37.43 KtOLXaqd.net
>>169の条件(iii)を
「a, b∈Aかつ1<a<bならばa^2+b^2∈A」
に置き換えた場合を考えてみたんだけど、
「4n+3型の素因数をもたない正整数は全てAに属する」
ということが言えそうなのに、惜しくも証明ができない。
Aに必ず含まれるような正整数からなる集合をSとすると
1,2,5∈S
a,b∈Sならばab∈S
が証明できるので、
4n+1型の素数がすべてSに属することを示せればいいんだけど。
とりあえず200以下の4n+1型素数についてはSに属することが確認できた。
あとは誰かに任せた。

219:132人目の素数さん
15/07/05 23:32:25.53 xGfPr6DD.net
コラッツの問題に似てるから
実は超難問みたいな地雷を踏みそうでこわい

220:132人目の素数さん
15/07/08 16:40:03.46 dTJ+Tbfl.net
eを自然対数の底とする.
正の整数nに対して, 関数f_n(x), およびF_n(x)を
f_n(x)=x^n(1-x)^n/(n!), F_n(x)=納k=0~2n](-1)^k f_n{k}(x) と定める.
(ただし, f_n{k}(x)はf_n(x)の第k次導関数を表す)
(1) 任意のnに対して, ∫[0 to 1]e^x f_n(x) dx=eF_n(1)-F_n(0) が成り立つことを示せ.
(2) eは無理数であることを示せ.

221:132人目の素数さん
15/07/09 07:56:40.26 cP+R7nhb.net
>>218 ちょっと考えてみたけど、
pを4n+1型の素数とすると
平方剰余の相互法則から、1≦k≦p-1 に対して
n^2 + k^2 = 0 (mod p) となる nが存在する
このnをn(k)とおくと、各kに対してn(k)は2つある
また、aとbが異なるとき、a+b=p なら n(a)=n(b)
それ以外のとき、n(a)とn(b)は全て異なる
n(n(k))=k,p-k が成り立つ
よって、n(k)をうまく選べば、 k → n(k) は
{1,2,・・・,p-1} から {1,2,・・・,p-1} への全単射となる
仮に、各pに対して、{1,2,・・・,p-1} のうち(p+3)/2個以上の数がAに含まれる・・・(※)
が証明できれば、鳩の巣原理より、あるkが存在して、
k,n(k)≠1 かつ kとn(k)が両方Aに含まれる
この時、n(k)^2 + k^2 ∈A となり、 p|n(k)^2 + k^2 より p∈A が示せる
(※)の証明はわかりません

222:132人目の素数さん
15/07/09 16:16:04.07 cP+R7nhb.net
と思ったけど、(※)は成り立ちそうにないな・・・・

223:132人目の素数さん
15/07/19 22:16:09.84 4WcEMeLJ.net
任意の2以上の整数nに対して,
不等式 tan(π/(2n))≦2/((n-1)*n^(1/(n-1)))
が成り立つことを示せ.

224:132人目の素数さん
15/07/21 11:08:25.82 kYxHbe+8.net
タスケテ。
複素数xyzがx+y+z=1,x³+y³+z³=10,xyz=2の時
xy+yz+zxとx²+y²+z²を求めよ。
またこの時x,y,zの値の組をそれぞれ求めよ。

225:132人目の素数さん
15/07/21 12:32:55.45 yFoYYNcQ.net
スレ違い。最低限のルールを守れないやつは相手にしない

226:132人目の素数さん
15/07/21 22:33:29.92 rZmsaMCj.net
>>218に書いた問題、証明できたっぽい。
あらためて書くと、こういう問題。
[問題]
正の整数からなる集合Aは次の条件(i),(ii),(iii)を全て満たす:
条件(i):Aは3個以上の元を持つ
条件(ii):a∈Aかつ d|a (d>0)ならばd∈A
条件(iii):a, b∈Aかつ1<a<bならばa^2+b^2∈A
このとき, Aは4n+3型の素因数をもたない正整数を全て含むことを示せ.
証明は結構長くなってしまったけど、せっかくなので投稿する。
[1,2,4∈Aの証明]
1<a<bなるa,b∈Aをとるとa^2+b^2,b^2+(a^2+b^2)^2∈Aで、
b,a^2+b^2,b^2+(a^2+b^2)^2のどれかは4以上の偶数(=2dとおく)。
2d∈Aより2∈Aおよび(2d)^2+2^2=4(d^2+1)∈Aとなり、1,2,4∈Aがいえる。
[Sの定義]
{1,2,4}から出発し、この集合に属する数の約数(>0)をこの集合に付け加える、
またはこの集合に属する2つの数(≧2)の平方の和をこの集合に付け加える、
ということを繰り返して得られる数全体からなる集合をSとする。
Sは明らかに条件(i)〜(iii)を満たす最小の集合である。
つづく。

227:132人目の素数さん
15/07/21 22:34:56.32 rZmsaMCj.net
[a∈S⇒2a∈Sの証明]
a=1のときは明らか。a≧2とする。
あるk(≧2)が存在してa∈Sかつak∈Sならば、
2a|akまたは2a|a^2+(ak)^2より2a∈Sがいえる。
このようなkが存在しないような最小のa∈Sがあると仮定すると、
Sの定義より、あるb,c∈Sによってa=b^2+c^2と表せる。
b,c<aより2b,2c∈Sなので、(2b)^2+(2c)^2=4a∈Sとなり矛盾。
以上よりa∈S⇒2a∈Sが示せた。
[a,b∈S⇒ab∈Sの証明]
a,b∈Sとすると2a,4a∈Sである。
Sの定義で述べた方法によってbを生成する数列が存在するが、
この数列の各項をa倍したものを考えると、これはabを生成する数列となる。
(x,y,x^2+y^2をa倍するとax,ay,a(x^2+y^2)となるが、
(ax)^2+(ay)^2からa(x^2+y^2)が得られるので問題ない。)
よってSの定義によりab∈Sである。
[Sの性質]
a∈Sとすると、2a∈Sより(2a)^2+2^2=4(a^2+1)∈Sからa^2+1∈Sがいえる。
またa^2∈Sおよび2a^2∈Sもいえる。
これにより、Sにおいては条件(iii)の1<a<bは不要となる。
ここまでをまとめると、Sは次の性質をもつ。
(1)1,2,4∈S
(2)a∈Sかつd|a(d>0)ならばd∈S
(3)a,b∈Sならばa^2+b^2∈S
(4)a,b∈Sならばab∈S
る。

228:132人目の素数さん
15/07/21 22:35:54.68 rZmsaMCj.net
[Sの元は4n+3型の素因数をもたないこと]
p=4n+3なる素数pについて、p|aなるa∈Sが存在すると仮定すると、
b^2+c^2≡0(mod p)なるb,c∈S(pの倍数ではない)があって、
b^2≡(-1)c^2(mod p)となるが、-1はmod pで平方非剰余なので矛盾。
よってSの元の素因数は2または4n+1型の素数となる。
よってもし
「任意の4n+1型素数はSに属する」
ということがいえれば、Sの性質(1),(4)より
「Sは4n+3型の素因数をもたない正整数からなる集合である」
といえ、Sの元が全て確定する。
[Mの定義]
4n+1型素数でSに属さないものがあると仮定し、その最小のものをpとする。
Sの元をpで割った剰余類として得られるもの全体からなる集合をMとする。
Mは
Z/pZ={[0],[1],…,[p-1]}([a]はaを代表元とする剰余類)
の部分集合である。
pはSに属さないので、[0]はMの元ではない。
なお、以下の記述においてaと[a]を区別しない場合がある。
[Mの性質]
Sの性質(1),(3),(4)はそのまま(剰余類の演算として)Mにもあてはまる。
ただし(2)はMにおいては使えなくなる。
また、pより小なる4n+1型素数は全てMの元であり、
Sの性質(4)より、これらおよび[2]からなる積は全てMの元である。

229:132人目の素数さん
15/07/21 22:36:27.59 rZmsaMCj.net
[Mは乗法に関して巡回群であること]
Mは乗法について閉じており、x∈Mなるxについてxの冪は全てMに属する。
x^m=1なるmが存在し、x^(m-1)がxの逆元となる。
よってMは乗法に関して群である。
とくにMはZ/pZ-{[0]}(巡回群)の部分群なので、あるg∈Sにより
M={[1],[g],[g]^2,…,[g]^(m-1)}
と表される。ただしmはMの位数であり[g]の位数である。
[m≡2(mod 4)の証明]
mが奇数と仮定すると、Mの任意の元[a]=[g]^kについて、
[a+1]=[a]+[1]=[g]^k+[1]={[g]^(m+1)}^k+[1]={[g]^(k(m+1)/2)}^2+[1]^2∈M
がいえるが、これにより[0]∈Mとなり矛盾。
mが偶数のとき、{[g]^(m/2)}^2=[1]より[g]^(m/2)=[-1]がいえる。
とくにmが4の倍数と仮定すると、{[g]^(m/4)}^2=[-1]より
{[g]^(m/4)}^2+[1]^2=[0]∈Mとなり矛盾。
以上よりm≡2(mod 4)である。
このことから、[-1]は[g]の奇数冪となる。
[q,rの仮定]
q<r<pなる素数q,rが存在して[q],[r]はMに属さないと仮定する。
(pはMの定義で登場した、Sに属さない最小の4n+1型素数)
ただしrより小なるq以外の素数は全てMに属するとする。
q,rは4n+3型の素数である。

230:132人目の素数さん
15/07/21 22:36:59.06 rZmsaMCj.net
[命題P]
「rより小なるq以外の任意の素数sについて、
sがmod qで平方剰余ならば[s]は[g]の偶数冪
sがmod qで平方非剰余ならば[s]は[g]の奇数冪
である」
という命題Pを考える。
Pを満たさないような最小のsが存在すると仮定する。
このとき、[-1]が[g]の奇数冪であることから、
sはmod qで平方剰余であり、かつ[-s]は[g]の偶数冪
-sはmod qで平方剰余であり、かつ[s]は[g]の偶数冪
のいずれかが成り立つ。
前者の場合、s≡a^2(mod q)なるa(1≦a≦(q-1)/2)があり、
[-s]=[g]^(2k)と表せる。
よって[a^2-s]=[a]^2+([g]^k)^2∈Mとなるが、
(a^2-s)/qは整数でありその絶対値はqより小さいので
[(a^2-s)/q]∈Mであるから、
[q]=[a^2-s]*[(a^2-s)/q]^(m-1)∈M
となって矛盾(ここでmはMの位数)。
後者の場合も、sと-sを入れ替えて同様に矛盾。
したがって命題Pは成り立つ。
[命題Pからいえること]
平方剰余は乗法性をもつので、
「qの倍数を除いて、rより小なる任意の正整数sについて、
sがmod qで平方剰余ならば[s]は[g]の偶数冪
sがmod qで平方非剰余ならば[s]は[g]の奇数冪
である」
といえる。

231:132人目の素数さん
15/07/21 22:37:21.75 rZmsaMCj.net
[q,rの仮定による矛盾]
(r+q)/2≡(r-q)/2(mod q)より、
(r+q)/2,(r-q)/2がともに[g]の偶数冪であるか、
または、-(r+q)/2,-(r-q)/2がともに[g]の偶数冪である。
よって[(r+q)/2]+[(r-q)/2]=[r]∈M
または[-(r+q)/2]+[-(r-q)/2]=[-r]∈Mより[r]∈M
となって矛盾。
[[1],[2],…,[p-1]∈Mの証明]
Mに属さない素数でpより小なるものが存在するならばただ1つである。
これをqとすると、(p+q)/2はpより小さくqの倍数でないので
[q]=[p+q]=[(p+q)/2]*[2]∈M
となって矛盾。
したがって、pより小なる任意の素数がMの元であり、
それらの積もMの元であるから[1],[2],…,[p-1]∈M
[Mは存在しない]
pは4n+1型の素数なので、p=a^2+b^2を満たすa,bが存在する。
よって[a],[b]∈Mより[a]^2+[b]^2=[p]=[0]∈Mとなって矛盾。
したがって、Mの定義を満たすpは存在しない。
すなわち、「任意の4n+1型素数はSに属する」。おしまい。

232:132人目の素数さん
15/07/22 00:36:28.04 7w9t1PZg.net
4=b^2+c^2.

233:132人目の素数さん
15/07/22 07:32:30.94 qRulk97x.net
>>232
>>226で4∈Aは証明してある。
4自体がb^2+c^2と表せる必要はない。

234:132人目の素数さん
15/07/28 00:04:52.15 V0v013Ov.net
プログラムの問題
入力ストリームと出力ストリームととn個のスタックがある。
n個のスタックを使って入力の順番を入れ替えて出力へ出すことを考える。
1ステップで次のことができるとする
(1)入力ストリームから一文字取り出しスタックへ積む
(2)スタックから一文字取り出しほかのスタックへ積む
(3)スタックから一文字取り出し出力ストリームへ出力する
n個のスタックを使うと入力k文字に対して任意の順番に入れ替えて出力できるとき
n個のスタックはk文字互換完備であるという。
ある定数cに対しc個のスタックが任意の有限の数mに対しm文字互換完備であるとき
c個のスタックは任意互換完備であるという。
任意互換完備となる定数cは存在するか?
存在するとしたらその最少の数はいくつか?

235:132人目の素数さん
15/07/28 02:28:28.92 QlC/V4UF.net
2

236:132人目の素数さん
15/07/28 03:03:42.46 dO/BAI9e.net
スタックって何かわからんハノイの塔みたいなことが出来るってことでいいのか

237:132人目の素数さん
15/07/28 06:14:44.23 A50AzsVE.net
思考停止のことじゃない?

238:132人目の素数さん
15/07/28 08:22:48.08 V0v013Ov.net
同じスタックに何回も積みなおしていいんなら2個のスタックで簡単にできちゃうなぁ
各スタックに番号を振って、スタックからスタックへ積みなおすのは
取りだすスタックが積むスタックより番号が若いときに限る、
としたらちょっとは面白くなるかな?

239:132人目の素数さん
15/07/29 16:20:02.76 CZbY/wc3.net
(cos(2π/7))^(1/3)+(cos(4π/7))^(1/3)+(cos(8π/7))^(1/3)の値を求めよ.

240:132人目の素数さん
15/07/29 17:11:12.92 PHmkOzke.net
234-238のスタック2個っていうのは
入力から文字 x_i を取り出す前に
最終的な出力での登場位置が x_i より早い文字をスタック1に
最終的な出力での登場位置が x_i より遅い文字をスタック2に
集めるみたいなことをしてけばいいってことかな
スタック1個だと、x_1x_2x_3->x_3x_1x_2 みたいなことができなそうだな

241:132人目の素数さん
15/07/29 19:47:09.55 s8W1tV31.net
スタック2個あれば取り出したい文字の上に積んであるやつを全部もう一個のスタックに移せば好きな文字が取り出せる。

242:132人目の素数さん
15/07/29 19:52:11.28 /rcHIzs4.net
むしろ、スタック1つでできる置換できない置換の判別法が知りたい。簡明なものがあるか?

243:132人目の素数さん
15/07/29 20:31:05.18 s8W1tV31.net
スタック1個なら入力からスタックへ積むかスタックから出力へ出すかだけだから、
探索しても分岐は起きないんじゃない?

244:132人目の素数さん
15/07/29 22:18:24.98 PHmkOzke.net
ああ
スタックへの積み方を工夫する必要すらないのか
スタックが2つあれば、取り出したいものをどんなタイミングでも取り出せる

245:132人目の素数さん
15/07/29 22:41:11.60 zneU1ISF.net
>>234
スタックを2個として、入力長Mの任意の置換に対して
a)最大スタック操作回数が最小となる手順とその回数
b)平均スタック操作回数が最小となる手順とその回数

246:132人目の素数さん
15/07/30 04:50:38.94 2OyXzzbU.net
>>237
ギャザか

247:132人目の素数さん
15/07/31 22:10:58.36 xqLCoXx2.net
スタックの操作の総数<m文字の置換の総数
がいえれば任意互換完備がないことが言えるかな?
無理筋かな?

248:132人目の素数さん
15/08/01 00:55:39.15 XcDx3Z/K.net
(a-x)(b-x)(c-x)......(z-x)=?

249:132人目の素数さん
15/08/01 01:32:08.16 vYFLauxI.net
夏よのぉ…

250:132人目の素数さん
15/08/01 02:02:17.28 6mU/08Ur.net
1/(a-x)(b-x)(c-x)......(z-x)=?

251:132人目の素数さん
15/08/06 22:03:58.71 oMuFm5JZ.net
一辺の長さが1の正四面体に内接する球の半径を求めよ

252:132人目の素数さん
15/08/07 00:18:58.40 eaPa7vGl.net
一辺の長さが1の正四面体に内接する球の直径を求めて1/2をかければいいんじゃね

253:132人目の素数さん
15/08/07 00:23:09.54 hrxJfg1J.net
表面積×r×1/3=体積

254:132人目の素数さん
15/08/07 00:35:20.90 q1KsZIY4.net
正四面体A(1,1,1),B(1,-1,-1),C(-1.1.-1),D(-1.-1.1)
正四面体ABCDの1辺の長さ2√2
原点から平面BCDx+y+z+1=0までの距離√3/3
x:√3/3=1:2√2 x=√6/12

255:132人目の素数さん
15/08/16 15:05:36.67 Mpo3tyZH.net
cos(2π/n)が有理数係数の499次以下の方程式の解としては表せず、500次方程式の解としては表せる最小の自然数nを求めよ

256:132人目の素数さん
15/08/17 17:57:52.99 nbwm9TMT.net
ルーレットで赤か黒に賭けて勝つ確率は、どちらも9/19。
毎回1ドルずつ賭け、元金900ドルを1000ドルに増やしたい。
1000ドルになるか、0ドルになるまで続ける。
p=9/19、x=900、y=1000 とおくとき、1000ドルに達する確率は
(((1-p)/p)^x-1)/(((1-p)/p)^y-1) で表せることを証明せよ。

257:132人目の素数さん
15/08/17 19:48:33.53 5vZcEIGg.net
>>256
3SATをランダムウォークしたときに解にたどり着く確率みたいなもんか?

258:132人目の素数さん
15/08/17 20:42:52.40 5vZcEIGg.net
pに1/2を代入して確かめてみようとしたら0割になったでござる。
怪しいな、ほんとに式あってる?
1/2が特殊な値になる理由がわからないんだが。

259:132人目の素数さん
15/08/17 21:41:15.35 nbwm9TMT.net
P-1/2なら0になっても仕方ないでしょ。

260:132人目の素数さん
15/08/17 21:56:22.05 5vZcEIGg.net
なぜ?
式が正しいなら勝つ確率が赤黒どちらも1/2のときも成り立たないとおかしいだろが。

261:132人目の素数さん
15/08/17 23:21:39.04 5vZcEIGg.net
URLリンク(research.preferred.jp)
とりあえず参考になるかもしれないから3SATランダムウォークのページ張っとくわ
そんな簡単な式にはならねーんじゃねーの
2項係数とか出てきそう

262:132人目の素数さん
15/08/18 03:35:25.69 wBRgC8p/.net
>>258
さきに分母分子 ((1-p)/p)-1 で割ればいい
ちなみに 9/10 になるぞ

263:132人目の素数さん
15/08/18 19:41:02.65 MskCv1Rn.net
どれに何を代入すると9/10になるって?

264:132人目の素数さん
15/08/18 20:52:40.48 Mzx5k9aX.net
父親と母親の血液型は共にAOです。
2人の間には子が1人います。
@子の血液型がAOである確率は?
A子の血液型を調べると、A型(AAまたはAO)であることが分かった。
この子の血液型がAOである確率は?

265:132人目の素数さん
15/08/19 00:11:37.17 xDAP6+8Q.net
それは、数学じゃない。
生理学の板で訊け。
計算以前に、
配偶子の接合率、受精卵の着床率、胎児の成育率等
に対する血液型遺伝子の影響について
データが必要になるからな。

266:132人目の素数さん
15/08/19 00:31:53.34 iEpfrIWD.net
そういうこと聞いてるんじゃないだろ

267:132人目の素数さん
15/08/19 00:42:11.10 pWhVseNF.net
ていうか、別に質問じゃなくて出題してるんだろうに

268:132人目の素数さん
15/08/19 05:29:44.81 JCfyF7oM.net
>>263
(((1-p)/p)^900-1)/(((1-p)/p)^1000-1)
の分母分子を ((1-p)/p)-1 で割ったもの
に p=1/2 を代入
(A^n-1)/(A-1)=A^(n-1)+A^(n-2)+…+A+1
くらい知ってるよな?
p=1/2 は「特殊な値」じゃないんだよ
いわゆる除去可能特異点だ
lim_{p→1/2} (((1-p)/p)^900-1)/(((1-p)/p)^1000-1) = 9/10

269:132人目の素数さん
15/08/19 05:49:06.29 M30G+BZt.net
>>264
中学の宿題です。宿題は質問スレに書いてください。

270:132人目の素数さん
15/08/19 12:32:34.01 PxSTIIXg.net
cos(n°)が有理数係数の二次方程式の解として表せる最小の自然数nを求めよ

271:132人目の素数さん
15/08/19 22:47:59.59 9q/Al0IK.net
>>268
計算機で検算しようとしたけど値が収束するのかなり遅いっぽいね。
漸化式はかなり複雑なんだが。
どうやって極限もとめるのかアイディアわかない。

272:132人目の素数さん
15/08/19 23:07:41.48 9q/Al0IK.net
x,yに小さな値入れて試してみたけどやっぱ値合わねぇなぁ
俺がなんか間違ってんのかなぁ

273:132人目の素数さん
15/08/19 23:10:44.74 9q/Al0IK.net
値合ったっぽい

274:132人目の素数さん
15/08/19 23:20:13.20 9q/Al0IK.net
計算機の検算では>>256の式は正しいっぽい。
どうやって導き出すのかはさっぱりわからんが。

275:132人目の素数さん
15/08/19 23:44:32.69 xl3Qr54D.net
n=0,m=900からスタートし、m=0になることがないように移動し、n回目に初めてmが1000となる
経路の数をC(n,1000)として、n回目に1000ドルになる確率は
P(n,1000)=C(n,1000)(9/19)^n

276:132人目の素数さん
15/08/19 23:57:41.89 eYTQUPX+.net
遷移行列の固有ベクトル計算したら((1-p)/p)^nの項が
ずらっと出てくるから真面目に展開すれば解けると思うよ

277:132人目の素数さん
15/08/20 22:45:14.68 art7FZLZ.net
あくしろよ!

278:132人目の素数さん
15/08/20 23:13:30.49 xC1gH3/Y.net
>>264
@2/4
A2/3

279:132人目の素数さん
15/08/21 05:26:12.66 cSey0xr3.net
>>256
どうやって証明するん?あく答えろよ!

280:132人目の素数さん
15/08/21 10:52:26.15 cSey0xr3.net
あくしろよ

281:132人目の素数さん
15/08/21 13:07:14.28 2OkXIMlt.net
命令すんな

282:132人目の素数さん
15/08/21 18:22:13.66 cSey0xr3.net
あくしてね

283:132人目の素数さん
15/08/21 21:02:40.64 cSey0xr3.net
あくあく!

284:132人目の素数さん
15/08/22 04:43:36.55 fYdC/ab3.net
>>256
あくおしえろよ!
>>261
何か言うことはないの?ああ?

285:132人目の素数さん
15/08/23 10:38:50.36 nzgmHyP9.net
URLリンク(suseum.jp)
これコンテスト問題にしては面白い
高級な匂いがするし

286:132人目の素数さん
15/08/25 04:40:01.08 QdxBqZp1.net
>>285
n≡r (mod p-1)
r=0,1,...,p-2
とするとき、rが奇数だとダメで、r=2だとOKであることはすぐ示せるのだが、
rが2以外の偶数の場合がよくわからない。

287:132人目の素数さん
15/08/25 21:03:17.71 37rXHgeW.net
偏りのない1枚のコインを繰り返し投げるとき、表がn回連続するまでの投げる回数の期待値を求めよ。

288:132人目の素数さん
15/08/26 15:52:24.71 soY25NWM.net
>>287
期待値が有限値であることを仮定して、それをa(n)とおく
表がn回連続した状態からn+1回連続するまでに投げる回数の期待値は
1+a(n+1)/2と表せるので,
a(n+1)=a(n)+1+a(n+1)/2、すなわち
a(n+1)=2a(n)+2
という漸化式が成り立つ
これとa(0)=0より
a(n)=2^(n+1)-2

289:132人目の素数さん
15/08/26 19:46:25.90 9nc0affB.net
n=2〜4までの期待値
31/4(n=2)、88(n=3)、416(n=4)

290:132人目の素数さん
15/08/26 20:23:09.30 qCO/zAhu.net
意外と多いな。
表だけだからか?

291:287
15/08/26 20:32:01.77 BOAIrO3E.net
正解です。私も漸化式を立てる同じ解法でした。
問題を次のように変えたものを考えていますが、まだ解けていません。
偏りのない1枚のコインを繰り返しn回投げるとき、表が連続する最大回数の期待値を求めよ。

292:132人目の素数さん
15/08/26 21:14:00.77 9nc0affB.net
n回投げたときに、表の確率をq(n)、裏となる確率をt(n)とすると
q(n)=t(n-1)/2
t(n)=(q(n-1)+t(n-1))/2
t(n+2)=t(n+1)/2+t(n)/4
t(1)=1/2 t(2)=1/2
T(n)=t(n)*2^nとするとT(n)はフィボナッチ数列であり
T(n+2)=T(n+1)+T(n)
T(0)=1 T(1)=1
となる。
n回投げたときに3回連続表が出る確率をp(n)とすると
2回連続するのは、表が出てから裏表表と出る場合か
裏が出てから2回表が連続する場合だから
p(n)=q(n-3)/8+t(n-2)/4
q(n)=t(n-1)/2から
p(n)=t(n-4)/16+t(n-2)/4
P(n)=p(n)*2^nとすると
P(n)=T(n-2)+T(n-4)=2*T(n-2)-T(n-3) (n≧5)
が成立する。
t(n)=C1((1+√5)/4)^n+C2((1-√5)/4)^n
t(1)=1/2 t(2)=1/2から
C1=(5+√5)/10 C2=(5-√5)/10
t(n)=(5+√5)((1+√5)/4)^n/10+(5-√5)((1-√5)/4)^n/10
E(n)=Σ[k=2,n]p(k)*k=p(2)*2+p(3)*3+p(4)*4+Σ[k=5,n]p(k)*k
=1/4*2+1/8*3+1/8*4+Σ[k=5,n]p(k)*k
=11/8+51/8=31/4

293:132人目の素数さん
15/08/26 22:29:07.04 soY25NWM.net
すみません、 >>289 >>292 さんはどの問題の話をされているのでしょうか?
>>291
念のため確認ですが、正解というのは >>288 のことでいいのですよね

294:132人目の素数さん
15/08/27 22:33:42.84 LWtuunFN.net
>>292
2行目で既に分からないのですが…

295:132人目の素数さん
15/08/27 22:36:16.76 LWtuunFN.net
>>292
> n回投げたときに、表の確率をq(n)、裏となる確率をt(n)とすると
どういうこと?
n回投げたときに、n回目が表の確率をq(n)ということなのかな?

296:132人目の素数さん
15/08/27 22:46:51.26 gn1uHFUy.net
>>295
この解は以前に検討して書いたもので正確性は定かではありません。
2回連続して表が出ると試行が終わるので、q(n)はn回目の試行で表が出て
n>1ではn-1回目に裏になっている確率という意味です。

297:132人目の素数さん
15/08/27 22:49:33.65 gn1uHFUy.net
>>292 自己レス、11行目を
n回投げたときに2回連続表が出る確率をp(n)とすると
に訂正

298:132人目の素数さん
15/08/27 23:01:04.87 LWtuunFN.net
>>291
> 偏りのない1枚のコインを繰り返しn回投げるとき、表が連続する最大回数の期待値を求めよ。
念のため、n=3 の場合で説明する。
表が連続する最大回数を kとおく。表を○、裏を×で表す。
 k=0のとき、×××となる確率は、1/8
 k=1のとき、○××、×○×、××○、○×○となる確率は、4/8
 k=2のとき、○○×、×○○となる確率は、2/8
 k=3のとき、○○○となる確率は、1/8
したがって、表が連続する最大回数の期待値 E(3) は、
 E(3) = 0・(1/8) + 1・(4/8) + 2・(2/8) + 3・(1/8) = 11/8

299:132人目の素数さん
15/08/28 00:00:14.03 pJoVXbh5.net
ちなみに、 >>292 氏が書いてるのは、
>>291 の問題ではなく、 >>287 の問題のn=2のケースのようだぞ?
>>289 の数値との一致を見る限りでは。

300:132人目の素数さん
15/08/28 00:08:09.53 pJoVXbh5.net
>>288>>291 で話が完結していることに気付いていないのか
あえて無視しているのか、何がやりたいんだ >>292

301:132人目の素数さん
15/08/28 04:18:33.21 LeKTMziP.net
>>298
表が連続する最大の回数の期待値は、表がn回連続するまでの回数の期待値とは違う。
>>300
前に検討した結果と異なるから書いているだけ。

302:287=298です
15/08/28 05:23:15.87 UDTInPuv.net
>>301
> 表が連続する最大の回数の期待値は、表がn回連続するまでの回数の期待値とは違う。
そんなこと分かりきっていますが…

303:132人目の素数さん
15/08/28 05:26:14.98 UDTInPuv.net
整理しておきます。
問題>>287
> 偏りのない1枚のコインを繰り返し投げるとき、表がn回連続するまでの投げる回数の期待値を求めよ。
解答>>288
> 期待値が有限値であることを仮定して、それをa(n)とおく
> 表がn回連続した状態からn+1回連続するまでに投げる回数の期待値は
> 1+a(n+1)/2と表せるので,
> a(n+1)=a(n)+1+a(n+1)/2、すなわち
> a(n+1)=2a(n)+2
> という漸化式が成り立つ
> これとa(0)=0より
> a(n)=2^(n+1)-2

問題>>291
> 偏りのない1枚のコインを繰り返しn回投げるとき、表が連続する最大回数の期待値を求めよ。
例(n=3の場合)>>298
> 念のため、n=3 の場合で説明する。 表が連続する最大回数を kとおく。表を○、裏を×で表す。
>
>  k=0のとき、×××となる確率は、1/8
>  k=1のとき、○××、×○×、××○、○×○となる確率は、4/8
>  k=2のとき、○○×、×○○となる確率は、2/8
>  k=3のとき、○○○となる確率は、1/8
>
> したがって、表が連続する最大回数の期待値 E(3) は、
>
>  E(3) = 0・(1/8) + 1・(4/8) + 2・(2/8) + 3・(1/8) = 11/8

304:256=287=291
15/08/28 05:34:33.89 UDTInPuv.net
まだ解かれていないもの
問題>>256
> ルーレットで赤か黒に賭けて勝つ確率は、どちらも9/19。
> 毎回1ドルずつ賭け、元金900ドルを1000ドルに増やしたい。
> 1000ドルになるか、0ドルになるまで続ける。
> p=9/19、x=900、y=1000 とおくとき、1000ドルに達する確率は
> (((1-p)/p)^x-1)/(((1-p)/p)^y-1) で表せることを証明せよ。

305:132人目の素数さん
15/08/28 05:37:28.31 UDTInPuv.net
>>291
念を押すけど、>>291は答えが準備できていません。
>>299
> ちなみに、 >>292 氏が書いてるのは、
> >>291 の問題ではなく、 >>287 の問題のn=2のケースのようだぞ?
なるほど。
てっきり>>292氏が、>>291の問題を勘違いして解いていたのかと思っていました。

306:132人目の素数さん
15/08/28 05:45:42.43 UDTInPuv.net
あたりき しゃりきの こんこんちき

307:132人目の素数さん
15/08/29 14:49:44.64 lXTUasUq.net
>>256,304
xから始めて yに達する確率を P(x)とすると
P(0)=0, P(x) = (1-p)P(x-1) + pP(x+1) (0<x<y), P(y)=1.
これを解けば、 P(x) = (((1-p)/p)^x-1)/(((1-p)/p)^y-1).

308:132人目の素数さん
15/08/29 16:06:35.07 YCiHvtOJ.net
この問題と同等の問題が、過去スレのどっかにあるはず。
出題者が「高校生に解けるはず」とか書いていたが、
ここで言うところのP(1)を結論から持ってきたようで、
P(0)、P(1)と漸化式から一般式を導いていたようだ。
確かに、P(0)、P(1)と漸化式があれば、高校生でも回答可能だ
だが、P(1)の計算方法を具体的に示し、
「このようにP(1)の計算は困難だが、それでも高校生に可能か」
のような質問をしたが、返答が無かったように記憶している。
その時の出題者と同一人物か?

309:132人目の素数さん
15/08/29 17:05:44.69 SyRxSJon.net
どっちの出題者でもないけど、P(1)は P(y)=1 があるからわかる。
P(0)=0, P(x) = (1-p)P(x-1) + pP(x+1) (0<x<y), P(y)=1.
漸化式を変形すると、
P(x+1) - P(x) = ((1-p)/p) {P(x) - P(x-1)} (0<x<y).
数列{P(x+1) - P(x)}は初項 P(1)-P(0)、公比 r := (1-p)/p の等比数列だから、
P(x+1) - P(x) = r^x {P(1) - P(0)} (0<=x<y).
よって、
P(x) = P(0) + Σ[k=0, x-1] {P(k+1) - P(k)} = P(0) + {(1 - r^x)/(1-r)} {P(1) - P(0)}.
P(0)=0 より、P(x) = {(1 - r^x)/(1-r)}P(1).
P(y)=1 より、P(1) = (1-r)/(1 - r^y).
したがって、
P(x) = (1 - r^x)/(1 - r^y) = (((1-p)/p)^x-1)/(((1-p)/p)^y-1).

310:132人目の素数さん
15/08/29 17:18:49.71 GXuWDarj.net
>>309
答えありきで逆算するならそれでもいいけど
真面目にやるなら下式で証明しないとダメでしょ
P(x,t+1) = (1-p)P(x-1,t) + pP(x+1,t) (0<x<y)
まあ、やることは大して変わらないけど

311:132人目の素数さん
15/08/29 17:24:03.87 9tBeoMHo.net
>>308
別人だよ

312:132人目の素数さん
15/08/30 21:55:58.20 lCKX1Y5g.net
pを奇素数とするとき, 任意の相異なる5つの正の整数に対して, そのうち2つを上手く選ぶことで, 選んだ2数の和がpでない奇素数で割り切れるようにできることを示せ.

313:132人目の素数さん
15/08/30 22:32:00.01 /oWHA1w4.net
>>312
なんか微妙な表現で分かりにくくしてあるけど
うまく選ぶことで3で割り切れるようにすることもできるし
5で割り切れるようにすることもできることを示せばいいだけのような

314:132人目の素数さん
15/08/31 12:27:28.60 YiMuchNW.net
>>313
5つとも15で割って1余る整数のとき、どの2つの和も3や5で割り切れない

315:132人目の素数さん
15/08/31 13:09:06.91 yUZ5qTrj.net
>>314
あそうか、なんか問題読み違えてた。
任意の5つの正の整数があれば、
2数の和を割り切る奇素数が少なくとも2つ存在することを言えばいいのかな。

316:132人目の素数さん
15/09/02 17:35:22.12 XNWv0rxl.net
>>312
S={a,b,c,d,e}をa<b<c<d<eなる5つの正整数からなる集合とし、
どの2つを選んでもその和はp以外の奇素数で割り切れないとする。
Sの元に共通因数があれば、それで割った数からなる集合S'も
やはり上の条件を満たす。
よって最初からSの元に共通因数は無いものとする。
このような集合Sが存在しないことを示せばよい。
A,B,C(A<B<C)をSの中から任意に選んだとき、
A+CとB+Cがともに2の冪乗と仮定すると2(A+C)≦B+C<2Cとなり矛盾。
よってA+CとB+Cのうち一方はpの倍数である。
よってa+d,b+d,c+dのうち2つはpの倍数。
同じくa+e,b+e,c+eのうち2つはpの倍数。
よってa+dとa+eがともにpの倍数であるか、
またはb+dとb+eがともにpの倍数であるか、
またはc+dとc+eがともにpの倍数である。
いずれの場合もe-dはpの倍数となる。
ここでd+eがpの倍数でないと仮定するとa+e,b+e,c+eはpの倍数。
よってc-aとc-bはともにpの倍数。
またa+cまたはb+cのうち一方はpの倍数。
よって(c-a)+(a+c)=(c-b)+(b+c)=2cはpの倍数なのでcはpの倍数。
これとc+eがpの倍数であることからeはpの倍数。
続いてa,b,dもpの倍数であることがいえる。
よってSの元に共通因数pがあることになり矛盾。
したがってd+eはpの倍数である。(続く)

317:132人目の素数さん
15/09/02 17:36:14.61 XNWv0rxl.net
d+e,e-dがともにpの倍数であることからd,eはpの倍数。
これとa+d,b+d,c+dのうち2つはpの倍数であることから
a,b,cのうち2つはpの倍数。
これとa+c,b+cのうち一方がpの倍数であることからcはpの倍数。
さらにa,bがともにpの倍数とするとSの元に共通因数pが
あることになり矛盾するので、a,bのうち一方はpの倍数でない。
以下、aがpの倍数でないとする。
bがpの倍数でないとしても同様なのでこの場合は省略。
c,d,eはpの倍数でありaはpの倍数でないから、
a+b,a+c,a+d,a+eはpの倍数でないので2の冪乗である。
よってa+c,a+d,a+eは4の倍数でありe-c,e-dは4の倍数となる。
ここでc+eとd+eのうち一方が4の倍数と仮定すると、
(e-c)+(c+e)=(e-d)+(d+e)=2eは4の倍数となりeは偶数となる。
これとa+eが2の冪乗であることからaは偶数。
続いてb,c,dも偶数であることがいえる。
よってSの元に共通因数2があることになり矛盾。
したがってc+eとd+eはどちらも4の倍数ではない。
e-cとe-dが偶数であることからc+eとd+eはともに偶数である。
よって整数s,t(0<s<t)を用いて
c+e=2p^s
d+e=2p^t
と表せるが、
p(c+e)=2p^(s+1)≦2p^t=d+e<2eとなり矛盾。
したがって、条件を満たすような集合Sは存在しない。
ちなみに4つの場合は1,5,7,11のような例がある。

318:132人目の素数さん
15/09/03 07:36:05.84 bNPipVA3.net
>>312
五つの相異なる正整数a,b,c,d,eに対し、十通りの和 a+b、a+c、a+d、...、d+e全てが、2^m*p^n 型になるような5数の選び方は無いことを証明すればよい。
これが示されれば、五つの相異なる正整数を選べば、必ずその中に、2^m*p^n型で無い二数の和が有ることになり、それは、2、p以外の素因数を持つ。
そのような5数a,b,c,d,eが見つかったとすると、2a,2b,2c,2d,2e、も自動的に条件を満たすので、5数の内少なくとも一つは奇数としてよい。(※)
同様に、pa,pb,pc,pd,pe、も自動的に条件を満たすので、5数の内少なくとも一つはpで割り切れないとしてよい。(※※)
(a+b)+(a+c)+(b+c)=2(a+b+c)なので、(a+b),(a+c),(b+c)の中に奇数は0個か2個ある → a,b,cに奇数は1個か3個ある。
同様の議論を、(a+c),(a+d),(c+d)の間等でも行い、(※)も考慮すると、結局、a,b,c,d,e全てが奇数であるとしてよい。
(a+b)、(a+c)、(b+c)はいずれもpの倍数だとすると、(a+b) + (b+c) = (a+c) + 2b であるから、bもpの倍数でなければならない。
すると、aもc、pの倍数となる。この検討を(a+c),(a+d),(c+d)等へ波及していくと、結局、abcde全てが、pの倍数でなければならなくなり、(※※)に違反する
つまり、(a+b)、(a+c)、(b+c)の中に、2^m型の数がある。(mは明らかに2以上)
仮にそれをa+b=2^sとし、b+c=2^x*p^y,a+c=2^u*p^vとすると、(a+b) + (b+c) = 2^s + 2^x*p^y = (a+c) +2b = 2^u*p^v + 2b
b= 2^(s-1) + 2^(x-1)*p^y - 2^(u-1)*p^v となるが、bは奇数なので、xかuの一方は1、他方は2以上でなければならない。
つまり、(a+b)、(a+c)、(b+c)のように、a,b,c,d,e中から3数を選び、その中の組み合わせで作った三つの和は、
一つは2^m型(以後A型)、一つは2*p^n型(B型)、一つは、2^s*p^t ただしs≧2(C型)と、明確に3種類に分けることができる。
しかし、十通りの和を、矛盾無くこの3種類に分類することはできなく(下参照)、文頭の命題が証明される。


次ページ
最新レス表示
スレッドの検索
類似スレ一覧
話題のニュース
おまかせリスト
▼オプションを表示
暇つぶし2ch

2982日前に更新/264 KB
担当:undef